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Abstract—High-quality clustering techniques are required for
the effective analysis of the growing data. Clustering is a
common data mining technique used to analyze homogeneous
data instance groups based on their specifications. The clustering
based nature-inspired optimization algorithms have received
much attention as they have the ability to find better solutions
for clustering analysis problems. Glowworm Swarm Optimization
(GSO) is a recent nature-inspired optimization algorithm that
simulates the behavior of the lighting worms. GSO algorithm is
useful for a simultaneous search of multiple solutions, having
different or equal objective function values. In this paper, a
clustering based GSO is proposed (CGSO), where the GSO is
adjusted to solve the data clustering problem to locate multiple
optimal centroids based on the multimodal search capability of
the GSO. The CGSO process ensures that the similarity between
the cluster members is maximized and the similarity among mem-
bers from different clusters is minimized. Furthermore, three
special fitness functions are proposed to evaluate the goodness
of the GSO individuals in achieving high quality clusters. The
proposed algorithm is tested by artificial and real-world data
sets. The better performance of our proposed algorithm over
four popular clustering algorithms is demonstrated on most data
sets. The results reveal that CGSO can efficiently be used for data
clustering.

I. INTRODUCTION

Clustering [1] is a widely studied data mining and most
important unsupervised learning technique used when an-
alyzing data. Clustering algorithms can be used in many
applications, for instance, pattern recognition [2], document
categorization [3], and bioinformatics applications [4]. The
core objective behind the clustering problem is to produce
different groups from data instances without any information
about the instance labels. The clustering algorithm collects
the similar data instances having common attributes and splits
them into different partitions/clusters based on a similarity
metric.

Generally, clustering algorithms can be classified into three
basic classes [5]: partitional clustering, density clustering,
and hierarchical clustering. The partitional clustering (e.g.,
K-means) [6] constructs several disjoint clusters and then
evaluates them by some measure such as minimizing the
squared errors among the cluster representatives (centroids)
and data instances. The density based clustering approaches
(e.g., DBSCAN) [7] apply a density criterion to locate the
dense regions that have more connectivity between the cluster

members and then separates them by low density regions.
On the other hand, hierarchical clustering [8] splits a big
cluster into smaller ones or merges smaller clusters into their
nearest cluster based on a similarity measure. In this paper,
we are concerned with the partitional clustering. K-means
clustering [6] is considered a common partitional clustering
algorithm which is basically a minimization of the squared
error objective function. K-means clustering suffers from some
drawbacks such as the sensitivity of the initial centroids
and the local optima convergence problem. In recent years,
some researchers discussed clustering based on the idea of
swarm intelligence [9] such as, ant colony optimization [10]
and particle swarm optimization [11]. The use of swarm
intelligence clustering algorithms is very efficient since these
algorithms avoid the k-means drawbacks of the initial number
of centroids as well as premature convergence.

Swarm intelligence [9] imitates the social natural commu-
nities such as birds flocks, ant colonies, and fish schools. The
behavior of these communities is based on the receptor of the
individual’s interactions by communicating with each other
to locate the food sources. Glowworm Swarm Optimization
(GSO) [12] is one of the recent swarm intelligence algorithms,
which belongs to the swarm intelligence field inspired by
simulated experiments of the lighting worms’ behavior. These
glowworms are able to control their light emission and use it
to glow for different purposes, such as attracting the prey, etc.
GSO has been used in several applications such as the hazard
sensing in ubiquitous environments [13] and mobile sensor
networks and robotics [12]. The objective of the majority
of the swarm intelligence algorithms is to locate the global
solution for the given optimization problem. On the other hand,
the GSO algorithm locates multiple solutions, having different
or equal objective function values. The swarm in the GSO
algorithm should have the ability to divide its members into
disjoint groups to locate multiple solutions.

This paper makes use of GSO optimization to solve the
clustering problem, which takes into account the advantages of
the GSO multimodal search ability to locate optimal centroids.
In addition, the proposed algorithm can discover the numbers
of clusters without needing to provide the number in advance.
Furthermore, three different fitness functions are introduced
to add flexibility and robustness to the proposed algorithm. In



addition, the proposed algorithm is tested on real and artificial
data sets with different shapes to demonstrate the clustering
quality.

The remainder of this paper is organized as follows: Section
II presents the related work in the area of clustering analysis
based on nature-inspired optimization algorithms. In Section
III, the classical glowworm swarm optimization approach is
introduced. In Section IV, our proposed clustering algorithm is
introduced. The experimental evaluation and results are shown
in Section V, and Section VI presents our conclusions.

II. RELATED WORK

Many clustering techniques are available in the literature
[2, 7, 8] such as K-means [6], DBSCAN [7], Furthest First
[14], and Learning Vector Quantization (LVQ) algorithm [15]
for unsupervised clustering. Due to space constraints, we
focus only on closely related work of clustering based nature-
inspired optimization algorithms.

The clustering based nature-inspired optimization algo-
rithms have received much attention to find better solutions for
clustering analysis problems. The clustering problem in these
algorithms is mapped to an optimization problem to locate the
optimal solution based on different similarity metrics. Several
clustering based nature-inspired optimization algorithms have
been proposed to meet the challenges of clustering analysis
problems.

In [16], the authors proposed a solution to the clustering
analysis problem where the genetic algorithm capability was
used. Their results showed that the genetic based cluster-
ing algorithm provides a good performance that is better
than the K-means algorithm for different data sets. In [17],
the Ant Colony Optimization (ACO) was used to perform
the clustering analysis. The authors mainly formulated the
problem by simulating the ant movement to group the data
instances according to their similarity which is expressed by
the available pheromone trails to guide ants to the optimal
solutions. From their performance comparison results with
other stochastic algorithms, their results in terms of the quality
were better than the other techniques.

Clustering algorithm based Particle Swarm Optimization
(PSO) was introduced by Omran et al. in [11] to solve the im-
age clustering problem. The results of their algorithm showed
that PSO is applicable to solve the clustering problems.
Another work applied PSO in clustering analysis, proposed in
[18], where the problem discussed was document clustering.
The authors compared their results with some state-of-the-art
techniques, and concluded that the PSO algorithm is applicable
to locate compact clusters.

Most of the existing nature-inspired optimization clustering
algorithms locate the global solution for the given optimization
problem, whereas our proposed algorithm locates multiple
solutions, having different or equal objective function values.
In addition, for most algorithms, the number of clusters as
a parameter is required in advance to guide the clustering
process. However, in several practical applications, the deter-
mination of the number of the clusters before exploring the

data set is impossible. Some other nature-inspired algorithms
have suffered from the slow convergence and, the clusters
quality is low in particular when the data set is noisy. Fur-
thermore, the authors faced some problems to produce well
separated clusters. Our proposed algorithm in this paper uses
the modified GSO algorithm to solve the clustering analysis
problem to tackle the slow convergence problem and the
problem of determining the number of clusters in advance.

III. CLASSICAL GLOWWORM SWARM OPTIMIZATION
ALGORITHM

GSO is one of the most recent swarm intelligence method
introduced by Krishnan and Ghose in 2005 [12]. GSO was
first used for optimizing multimodal functions with equal
or unequal objective function values. In GSO, glowworm
swarm S, which consists of m glowworms, is distributed
in the objective function search space. Each glowworm gj
(j = 1...m) is assigned a random position pj inside the given
function search space. Glowworm gj carry its own luciferin
level Lj , and has the vision range called local-decision range
rdj . The luciferin level depends on the objective function value
and glowworm position. The glowworm with a better position
is brighter than others, and therefore, has a higher luciferin
level value and is very close to one of the optimal solutions.
All glowworms seek the neighborhood set within their local
decision range, and then move towards the brighter one within
the neighborhood set. Finally, most of the glowworms gather to
create compact groups in the function search space at multiple
optimal locations of the objective function. Initially, all the
glowworms carry an equal luciferin level (L0). The rd and
radial sensor range rs are initialized with the same value
(r0). After that, the iterative process consists of several lu-
ciferin updates and glowworm movements are executed to find
the optimal solutions. Throughout the luciferin level update,
the objective function is evaluated at the current glowworm
position (pj) and then the luciferin level for all glowworms
are adjusted based on the new objective function values. The
luciferin level Lj is updated using the following equation:

Lj(t) = (1− ρ)Lj(t− 1) + γF (pj(t)) (1)

where Lj(t−1) is the previous luciferin level for glowworm j;
ρ is the luciferin decay constant (ρ ∈ (0, 1)); γ is the luciferin
enhancement fraction, and F (pj(t)) represents the objective
function value for glowworm j at current glowworm position
(pj); t is the current iteration. After that, each glowworm j
explores its own neighborhood region to extract the neighbors
that have the highest luciferin level by applying the following
rule:

z ∈ Nj(t) iff Distancejz < rdj(t) and Lz(t) > Lj(t)
(2)

where z is one of the closer glowworms to glowworm j,
Nj(t) is the neighborhood set, Distancejz is the Euclidean
distance between glowworm j and glowworm z, rdj(t) is the
local decision range for glowworm j, and Lz(t) and Lj(t)
are the luciferin levels for glowworm z and j, respectively.



After that, to select the best neighbor from the neighborhood
set, the probabilities for all neighbors are calculated using the
following equation:

Probjz =
Lz(t)− Lj(t)∑

k∈Nj(t)
Lk(t)− Lj(t)

(3)

where z is one of the neighborhood set Nj(t) of glowworm
j. After that, each glowworm selects the movement direction
using the roulette wheel method whereby the glowworm with
the higher probability has a higher chance to be selected from
the neighborhood set. Then, the glowworm position (pj) is
adjusted based on the selected neighbor position (pz) using
the following equation:

pj(t) = pj(t− 1) + s
pz(t)− pj(t)
Distancejz

(4)

pj(t − 1) is glowworm j’s previous position, s is a step size
constant, and Distancejz is the Euclidean Distance between
glowworms j and z. At the end of the GSO iteration, the local
decision range rdj is adjusted by the following equation:

rdj(t) = min{rs,max[0, rdj(t− 1)

+β(nt− |Nj(t− 1)|)]}
(5)

rdj(t − 1) is the previous rdj , rs is the radial sensor range
constant, β is a model constant, nt is a constant parameter
used to restrict the neighborhood set size, and |Nj(t)| is the
actual neighborhood set size. In our proposed algorithm, we
relaxed the local decision range update step and fixed the value
of the rdj to be the same value as the rs constant. However,
the parameters nt and β are also relaxed.

IV. PROPOSED ALGORITHM

Our approach is a partitioning-based clustering which is
motivated by the notion that instances are gathered around the
centroids. K-means is one of the partitioning-based clustering
techniques, where the centroids are extracted based on the
weighted average of the data instances. The weighted average
extraction method could be efficient if the data set is divided
into organized shaped clusters. However, it is not efficient
if the data set contains arbitrary shaped clusters. In our
proposed algorithm, we are formulating the clustering problem
as a multimodal optimization problem to extract the centroids
based on glowworms’ movement.

The proposed algorithm partitions the given data set into
sets of clusters, such that each glowworm in the swarm tries to
cover larger numbers of data set instances. Furthermore, each
glowworm moves toward the glowworms that cover a larger
amount of data instances and has smaller distances between
the data instances in the local region for that glowworm which
is controlled by rs. In the next subsections, we provide a
formal description of the clustering problem as well as the
core components used in our proposed algorithm. Then, we
discuss the proposed clustering algorithm.

A. Preliminaries

The clustering algorithm is applied on data set, D, con-
sisting of n instances with d-dimensions, each instance is
represented by xi, i = 1...n. Given D, a clustering algorithm
tries to extract a set of clusters C = {C1, C2, ......, Ck},
each is represented with a point called centroid, such as
c = {c1, c2, ......, ck}, where k is the number of centroids in
the c centroid set. Furthermore, the clustering algorithm tries
to maximize the similarity of the instances in the same cluster,
and to minimize the similarity of instances from different
clusters. In addition, each cluster should have at least one
instance assigned to it, and the different clusters should be
disjoint such that

⋂
i..k Ci = {} and

⋃
i..k Ci = D, which

ensures that there is no empty cluster. The Sum Squared Errors
(SSE) fraction is calculated using the following equation:

SSE =

k∑
j=1

|Cj |∑
i=1

(Distance(xi, cj))
2 (6)

Another fraction is used in our proposed algorithm called
Inter-Distance, which is calculated by the following equation:

InterDist =

k∑
i=1

k∑
j=i

(Distance(ci, cj))
2 (7)

In this paper, we use the Euclidean distance to calculate the
Distance.

The swarm S used in the GSO optimization process consists
of m glowworms, where each glowworm is represented by a
vector, gj , j = 1...m. Each gj has 5 components: luciferin
level (Lj), fitness function value (Fj), d-dimensional position
vector (pj), coverage set (crj) which is the set of the data
instances that are covered by gj , and intra-distance (intraDj)
between the crj set members and gj position. The gj should
cover at least one data instance in its local range. The local
range is a constant and is equal to the radial sensor range rs,
which is the same for all glowworms in swarm S. Furthermore,
keeping the local range constant throughout the clustering
process ensures that a glowworm keeps moving towards the
optimal glowworms in all cases, even if it does not have
neighbors or if it has many neighbors around.

B. Clustering based GSO Algorithm - CGSO

In recent years, GSO has been proven to be effective to
solve optimization problems [19]. In data clustering, it can be
formulated as an optimization problem that finds the optimal
centroids of the clusters rather than to find optimal data
partitions. The strength of optimization motivates us to apply
GSO for finding the optimal solutions for the clustering prob-
lems. GSO is distinguished from other optimization techniques
(that locate one local or global optimal solution), by finding
multiple optimal solutions. The found solutions either have
equal values for the dedicated objective function or not.

In our proposed clustering algorithm CGSO, the GSO objec-
tive is adjusted to locate multiple optimal centroids such that
each centroid represents a sub-solution and the combination



of these sub-solutions formulate the global solution for the
clustering problem. The proposed CGSO consists of four main
phases: initialization phase, luciferin level update, glowworm
movement, and candidate centroids set construction.

In the initialization phase, first an initial glowworm swarm
S of size m is created. For each glowworm gj , a random
position vector (pi) is generated using uniform randomization
within the given search space within the minimum and the
maximum values that are calculated from the data set D.
Then, the luciferin level (Lj) is initialized using the initial
luciferin level L0. The fitness function value Fj is initialized
to zero. The local range rs is set to an initial constant range r0.
Secondly, after initializing the swarm, the set of data instances
crj which are covered by gj , is extracted from data set D, and
the intraDj is calculated using the following equation:

intraDj =

|crj |∑
i=1

Distance(crji, gj) (8)

where crji is the data instance i which is covered by gj ; |crj |
is the number of data instances which is covered by gj . Then,
in the last step of the initialization phase, the swarm-level
fractions SSE and InterDist are calculated.

To initialize SSE, we extract the glowworms list that
covered the highest number of data instances (the glowworms
have the maximum |crj | sizes). These glowworms should be
disjointed from each other, where each glowworm is located
in a different region (the distance between any pair of these
glowworms should be greater than rs). The extracted glow-
worm list is considered the initial set of the candidate centroid
c. After that, the candidate centroid set c is used to calculate
the initial SSE using Equation 6. The same initial set c is
also used to calculate the InterDist which is calculated by
Equation 7. After the initialization phase, an iterative process
is performed to find optimal glowworms that represent the
clustering problem centroids. The result of each iteration is an
updated swarm with updated candidate centroids set c. In the
luciferin level update phase, firstly, the fitness function F is
evaluated to assign new Fj values for each glowworm using
the glowworm position and other information.

Three different fitness functions are proposed to evaluate the
goodness of the glowworm. For all proposed fitness functions,
each glowworm tries to maximize the coverage percentage
from the data instances |crj | by keeping the intra-distances
intraDj among the covered data instances and the glowworm
as minimum. Furthermore, we used normalized fractions for
the |crj | and intraDj by dividing the total number of data
instances n and max

j
(intraDj), respectively, to avoid the

biased state between the two fractions. The fitness functions
are different from each other depending on the swarm-level
fractions (SSE, and InterDist) that are used. The first fitness
function is given by the following equation:

F1(gj) =
1
n |crj |

SSE × intraDj

max
j

(intraDj)

(9)

In F1(gj), and beside the purpose of maximizing |crj | and
minimizing intraDj , we incorporate SSE swarm-level frac-
tion to be minimized between the candidate centroids set as a
whole. The second fitness function is given by the following
equation:

F2(gj) =
InterDist× 1

n |crj |
intraDj

max
j

(intraDj)

(10)

In F2(gj), we incorporate InterDist swarm-level fraction in
the process, and this fraction should be maximized among the
candidate centroids set c. The third fitness function is given
by the following equation:

F3(gj) =
InterDist× 1

n |crj |
SSE × intraDj

max
j

(intraDj)

(11)

In F3(gj), a combination between maximization of the
InterDist and minimization of the SSE fractions is added
to the F3(gj) at the same time. After the fitness function
evaluation for glowworm gj , the luciferin level Lj is updated
using Equation 1. Then, each glowworm gj locates the neigh-
borhood group using Equation 2, and the neighbor probability
values are calculated based on Equation 3 to find the best
neighbor using the roulette wheel selection method. Then, the
glowworm is moved towards the best neighbor by updating
its pj vector by Equation 4 using the best neighbor position.
After that, |crj |, and intraDj are updated based on the new
glowworm gj positions.

The candidate centroid set c is reconstructed based on
the highest fitness values (Fj), and not like the way they
are extracted during the initialization phase, which is based
on the highest number of data instances (the glowworms
have the maximum |crj |). The same rule is used during the
internalization phase to construct candidate centroid set c,
where all c members should be disjoint from each other such
as each glowworm should locate in different regions and the
distance between the glowworm pairs should be greater than
range rs. After that, the candidate centroid set c is used
to calculate the new value for SSE which is calculated by
Equation 6. In addition, the same candidate centroids set c
is also used to calculate InterDist, which is calculated by
Equation 7. Then, the fitness function is reevaluated using
the new information. The iterative process is continued until
the size of the candidate centroid set c becomes less than a
specific threshold (minimum number of centroids is given), or
the maximum number of iterations is achieved. The candidate
centroid set c decreases throughout the iterative process,
and after the clustering process is completed, the candidate
centroid set is used to evaluate the clustering results.

C. Illustrative Example

Figure 1 shows an illustrative example of the CGSO clus-
tering algorithm process to visualize the clustering results. An
artificial data set with 2 dimensional instances is generated
with 4 balanced clusters such as each cluster formulates a
circle. Figure 1(a) shows the initial swarm state distributed in



(a) Initial State (b) Glowworms Movements (c) Glowworms Final Locations (centroids)

Fig. 1. Clustering process for the artificial data set with swarm size=1, 000, maximum number of iterations=200, and rs=1.2: the glowworms start from
an initial random location and move to one of the centroids. 1(a) The initial random glowworm locations (small black crosses) with data set instances (red
points). 1(b) The movements of the glowworms throughout the clustering process. 1(c) The final locations of glowworms (small squares) after the clustering
process with 4 centroids, each cluster in the data set has a different color based on the minimum distances to the centroid.

the search space using the random uniform distribution and
the scattered artificial data set in the same search space. The
second part, Figure 1(b) shows glowworm movements towards
the near optimal centroids. At the end, all glowworms are
gathered at the 4 optimal centroids as shown in Figure 1(c).

V. EXPERIMENTS AND RESULTS

This section presents a performance analysis to investigate
the efficiency of the CGSO algorithm in the data clustering.
We present the results obtained using the CGSO algorithm
on well-known data sets to conduct a reliable comparison.
Furthermore, the comparisons between the three introduced
fitness functions are presented to show the algorithm’s robust-
ness. In addition, we present the comparison of the CGSO
with other four well-known clustering algorithms: K-Means
clustering [6], average linkage agglomerative Hierarchical
Clustering (HC) [8], Furthest First (FF) [14], and Learning
Vector Quantization (LVQ) [15], which have been used in the
literature and we analyze their performance. Finally, the time
complexity and algorithm convergence are discussed.

A. Environment

We ran the experiments on the PC containing 6GB of RAM,
4 Intel cores (2.67GHz each). For our experiments, we used
Java runtime 1.6 to implement the proposed algorithm and
WEKA [20] open source for comparisons. We present the

TABLE I
SUMMARY OF THE DATA SETS

Data set #Records #Features #Clusters Type
Iris 150 4 2 Real
Ecoli 327 7 5 Real
Glass 214 9 6 Real
Balance 625 4 3 Real
Seed 210 7 3 Real
Mouse 490 2 3 Artificial
VaryDensity 150 2 3 Artificial

results obtained using the CGSO on 7 typical data sets which
are used in the literature. The first 5 data sets are obtained

from the UCI database repository1. Furthermore, we used 2
artificial data sets from ELKI2, and use them to visualize the
clustering results. All data sets are described in Table I.

B. Evaluation Measures

In our experiments, we use two different measures for the
evaluation of the cluster quality: entropy and purity [21]. These
are the standard measures of the clustering quality. Entropy
measures how the various semantic classes are distributed
within each cluster, and is calculated by the following equa-
tion:

Entropy =

k∑
j=1

| Cj |
n

E(Cj) (12)

where Cj contains all data instances assigned to cluster j by
the clustering algorithm, n is the number of data instances in
the data set, k is the number of clusters that is generated from
the clustering process, and E(Cj) is the individual entropy of
cluster Cj which is defined by the following equation:

E(Cj) = −
1

log q

q∑
i=1

| Cj ∩ Li |
| Cj |

log (
| Cj ∩ Li |
| Cj |

) (13)

where Li denotes the true assignments of the data instances
in cluster i; q is the number of actual clusters in the data set.
Similarly to the previous equation, the purity of the clustering
is defined as:

Purity =
1

n

k∑
j=1

max
i

(| Li ∩ Cj |) (14)

Smaller entropy values and larger purity values indicate better
clustering solutions. The clustering quality is perfect if clusters
only contain data instances from one true cluster; in that case
the purity and entropy equal 1 and 0, respectively.

We used the GSO settings that are recommended in [19]. We
used ρ = 0.4; γ = 0.6; the initial luciferin level L0 = 5.0; the

1http://archive.ics.uci.edu/ml/index.html
2http://elki.dbs.ifi.lmu.de/wiki/DataSets



(a) Purity (b) Entropy
Fig. 2. Box plots of the purity and entropy results obtained by comparing three different fitness functions (F1, F2, and F3) with different data sets. The
small solid circles represent the average of 25 runs, and the bar inside the rectangle shows the median; minimum and maximum values are represented by
whiskers below and above the box.

step size s = 0.03. The swarm size used in our experiments
is equal to 1000 glowworms and the maximum number of
iterations is set to 200. Furthermore, since radial sensor
range (local range) rs depends on the data set, preliminary
experiments were conducted by varying the rs values in order
to choose the best rs value for each individual data set. The
best rs values that were empirically determined for the Iris,
Ecoli, Glass, Balance, Seed, Mouse, and VaryDensity data sets
are 1.35, 0.38, 0.38, 0.48, 0.052, and 0.06, respectively.

C. Results

This section presents the comparison among the three
proposed fitness functions to evaluate the impact of these
functions in our proposed CGSO algorithm. In addition, com-
parisons with other well-known clustering methods are pro-
posed. In order to abbreviate our proposed algorithm variants
which are based on different fitness functions, a specific format
is used to distinguish them, such that CGSO-F1, CGSO-F2,
CGSO-F3 are our proposed algorithm using F1, F2, and F3,
respectively.

To evaluate the impact of the fitness functions in our
proposed CGSO algorithm, we compared the three variants
(CGSO-F1, CGSO-F2, and CGSO-F3) to show the algorithm
flexibility and robustness. The purity and entropy results
distribution for applying CGSO on the given data sets are
shown as the box plots in Figure 2. It can be seen from
Figure 2(a) that the highest average purity (25 independent
runs) is produced using F1 for all data sets (however, it is
not statistically significant). Furthermore, it can be noted from
Figures 2(b), F1 achieved the minimum average entropy for
the Iris, Glass, Balance, Seed data sets (however, again not
statistically significant). F2 obtained the minimum average
entropy for the Ecoli and VaryDensity data sets.

A comparison of the clustering quality in terms of purity and
entropy with other clustering methods are shown in Tables II
and III, respectively. For our proposed algorithm, the average
and the standard deviation of the purity and entropy results
for 25 independent runs for each of the three fitness functions
as well as the best results (within brackets) are presented in
Tables II and III. The highest purity and smallest entropy

values in each case are shown in bold. It can been seen
from the Table II, CGSO-F1 outperforms all other clustering
techniques for most data sets with an average purity of 0.919,
0.792, 0.541, 0.726, 0.900, and 0.956 for Iris, Ecoli, Glass,
Balance, Seed, VaryDensity, respectively. The HC obtained the
best purity for the Mouse data set (0.91), however, its result
was not much different compared to the result achieved by
CGSO.

For the entropy results in Table III, where a smaller entropy
implies a better result, CGSO-F1 shows competitive perfor-
mance and outperforms other clustering techniques for most
data sets with an average entropy of 0.209, 0.543, 0.622, and
0.302 for Iris, Glass, Balance, and Seed, respectively. The
HC obtained the best entropy for the Mouse data set (0.165).
The K-Means obtained the best entropy for the Ecoli data set
(0.307). Furthermore, CGSO-F3 obtained the best entropy for
the VaryDensity data set. Figure 3 shows the visualization of
clustering quality results (best run is selected from the highest
function results) of the Mouse data set. Figure 3(b) shows that
the clustering quality results of CGSO-F3 (obtains the best
results among the three functions), and Figure 3(c) shows the
clustering quality results of K-means. It can been seen that
CGSO-F3 is able to assign the data instances to the correct
clusters, with highest purity of 0.896, while K-means’ purity
result is 0.827.

D. Complexity and convergence analysis

The overall time complexity of our proposed algorithm
depends mainly on the amount of time it requires to find the
neighborhood set for each glowworm and the amount of time
it requires to retrieve the coverage set (crj) from the data set
that is covered by individual glowworm gi as well as the time
to calculate IntraDistj between the glowworm gi and its
coverage set (crj). Furthermore, the overall time also depends
on the dimensionality of the data set used, as well as the
swarm size and the maximum number of iterations. The three
proposed fitness functions F1, F2, F3 share the two fractions
|crj | and IntraDistj that are distinguished from each other
in terms of use of SSE and InterDist swarm-level fractions.
The time needed to calculate SSE and InterDist decreases



TABLE II
PURITY RESULTS

Data set CGSO-F1 CGSO-F2 CGSO-F3 K-Means HC FF LVQ

Iris 0.919 ± 0.090 [ 0.933 ] 0.903 ± 0.014 [ 0.927 ] 0.909 ± 0.012 [ 0.933 ] 0.887 0.887 0.860 0.507
Ecoli 0.792 ± 0.006 [ 0.801 ] 0.779 ± 0.029 [ 0.801 ] 0.789 ± 0.012 [ 0.801 ] 0.774 0.654 0.599 0.654
Glass 0.541 ± 0.018 [ 0.570 ] 0.533 ± 0.036 [ 0.607 ] 0.529 ± 0.020 [ 0.575 ] 0.542 0.463 0.481 0.411
Balance 0.726 ± 0.039 [ 0.805 ] 0.685 ± 0.061 [ 0.810 ] 0.694 ± 0.074 [ 0.882 ] 0.659 0.632 0.653 0.619
Seed 0.900 ± 0.016 [ 0.929 ] 0.889 ± 0.026 [ 0.924 ] 0.897 ± 0.018 [ 0.929 ] 0.876 0.895 0.667 0.667
Mouse 0.837 ± 0.013 [ 0.880 ] 0.834 ± 0.018 [ 0.876 ] 0.833 ± 0.018 [ 0.896 ] 0.827 0.910 0.800 0.843
VaryDensity 0.956 ± 0.006 [ 0.967 ] 0.956 ± 0.007 [ 0.967 ] 0.957 ± 0.006 [ 0.967 ] 0.953 0.667 0.667 0.567

TABLE III
ENTROPY RESULTS

Data set CGSO-F1 CGSO-F2 CGSO-F3 K-Means HC FF LVQ

Iris 0.209 ± 0.018 [ 0.170 ] 0.241 ± 0.020 [ 0.210 ] 0.233 ± 0.018 [ 0.176 ] 0.264 0.230 0.307 0.790
Ecoli 0.325 ± 0.013 [ 0.295 ] 0.342 ± 0.050 [ 0.293 ] 0.324 ± 0.014 [ 0.305 ] 0.307 0.522 0.611 0.579
Glass 0.543 ± 0.023 [ 0.495 ] 0.569 ± 0.022 [ 0.519 ] 0.568 ± 0.030 [ 0.507 ] 0.567 0.662 0.646 0.754
Balance 0.622 ± 0.078 [ 0.446 ] 0.690 ± 0.068 [ 0.560 ] 0.669 ± 0.099 [ 0.395 ] 0.701 0.739 0.654 0.753
Seed 0.302 ± 0.031 [ 0.250 ] 0.317 ± 0.039 [ 0.253 ] 0.305 ± 0.027 [ 0.239 ] 0.327 0.298 0.537 0.577
Mouse 0.299 ± 0.015 [ 0.253 ] 0.302 ± 0.021 [ 0.248 ] 0.304 ± 0.020 [ 0.234 ] 0.319 0.165 0.351 0.262
VaryDensity 0.141 ± 0.013 [ 0.116 ] 0.141 ± 0.017 [ 0.116 ] 0.138 ± 0.016 [ 0.116 ] 0.145 0.421 0.466 0.728

(a) Original Data set (b) Clustering with CGSO-F3 (c) Clustering with K-means

Fig. 3. Clustering results for the Mouse data set, where the black boxes represent the centroids. 3(a) The original Mouse data set. 3(b) The clustering results
with CGSO using fitness function F3. 3(c) The clustering results with K-means.

TABLE IV
RUNNING TIME AND NUMBER OF ITERATIONS

Data set CGSO-F1 CGSO-F2 CGSO-F3
Average Time (s) Average #Iterations Average Time (s) Average #Iterations Average Time (s) Average #Iterations

Iris 10.79 101.80 11.58 108.92 10.74 101.04
Ecoli 3.37 17.56 3.50 18.44 3.82 20.16
Glass 15.95 78.72 18.35 89.88 23.02 82.20
Balance 14.68 96.40 13.87 95.84 13.65 94.04
Seed 5.04 27.36 5.00 27.24 4.82 26.12
Mouse 1.61 17.72 1.79 19.24 1.40 15.20
VaryDensity 7.72 122.40 7.07 110.16 7.88 125.88

with consequent iterations since the number of the candidate
centroid set size |c| is also reduced. Table IV shows the average
running time and average number of iterations (over 25 runs)
are required to achieve the optimal number of centroids.
We can note that CGSO-F3 has a shorter average running
time for Iris, Balance, Seed, and Mouse data sets compared
to CGSO-F1, and CGSO-F2. For example, CGSO-F3 needs
10.74 seconds to converge for the Iris data set, whereas CGSO-
F1 and CGSO-F2 need 11.58 and 10.74 seconds, respectively,
for the same data set. Furthermore, CGSO-F3 converges faster

than the other two for the Iris, Balance, Seed, and Mouse
data sets. For instance, CGSO-F3 needs 101.04 iterations
on average for Iris, whereas CGSO-F1 and CGSO-F2 need
101.8, and 108.92, respectively, for the same data set. In
addition, CGSO-F1 has shorter average running time for Ecoli
and Glass data sets as well as smallest average number of
iterations, for example, CGSO-F1 needs 3.364 seconds and
17.56 iterations on average to converge for the Ecoli data set.
Furthermore, CGSO-F2 has a shorter average running time for
the VaryDensity data set and has the smallest average number



of iterations such as CGSO-F2 needs 7.07 seconds and 110.16
iterations on average to converge.

VI. CONCLUSION

In this paper, we have presented a new clustering algo-
rithm based on glowworm swarm optimization which takes
into account the advantages of the GSO multimodal search
capability to locate optimal centroids. The proposed algorithm
CGSO can discover the clusters without needing to provide
the number of clusters in advance. Experimental results on
several real and artificial data sets with different characteristics
show that our proposed algorithm is efficient compared to
well-known clustering methods that have been used in the
literature. In addition, three different fitness functions were
proposed to add flexibility and robustness to the proposed
algorithm. The average clustering quality, in terms of purity
and entropy results over 25 runs, shows that our proposed
algorithm is robust since the variances are relatively small. Our
future research will include the verification of our proposed
algorithm on other types of data sets with higher dimensions
as well as we will investigate the effectiveness of our proposed
algorithm with larger data set sizes. Furthermore, we will
investigate to find an efficient way to determine the radial
range rs parameter, for which preliminary experiments are
needed.
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