
Effect of Strategy Adaptation on Differential Evolution in Presence
and Absence of Parameter Adaptation: An Investigation

Deepak Dawar and Simone A. Ludwig
Department of Computer Science, North Dakota State University,

Fargo, ND, USA

September 2, 2017

Abstract Differential Evolution (DE) is a simple,
yet highly competitive real parameter optimizer in
the family of evolutionary algorithms. A significant
contribution of its robust performance is attributed
to its control parameters, and mutation strategy em-
ployed, proper settings of which, generally lead to
good solutions. Finding the best parameters for a
given problem through the trial and error method is
time consuming, and sometimes impractical. This
calls for the development of adaptive parameter con-
trol mechanisms. In this work, we investigate the
impact and efficacy of adapting mutation strategies
with or without adapting the control parameters, and
report the plausibility of this scheme. Backed with
empirical evidence from this and previous works, we
first build a case for strategy adaptation in the pres-
ence as well as in the absence of parameter adapta-
tion. Afterwards, we propose a new mutation strat-
egy, and an adaptive variant SA-SHADE which is
based on a recently proposed self-adaptive memory
based variant of Differential evolution, SHADE. We
report the performance of SA-SHADE on 28 bench-
mark functions of varying complexity, and compare
it with the classic DE algorithm (DE/Rand/1/bin),
and other state-of-the-art adaptive DE variants in-
cluding CoDE, EPSDE, JADE, and SHADE itself.

Our results show that adaptation of mutation strat-
egy improves the performance of DE in both pres-
ence, and absence of control parameter adaptation,
and should thus be employed frequently.

Keywords: Evolutionary algorithms, Differential
evolution, mutation strategy, adaptive control.

1 Introduction

Challenging real world optimization problems are
ubiquitous in scientific and engineering domains.
Complexity of the problem notwithstanding, its ob-
jective function may also be non-continuous, and
non-differentiable adding to the overall difficulty,
and negotiability of the search space. Researchers
have been looking towards Darwinian inspired evo-
lutionary theories like social group behavior, and for-
aging strategies, to name a few, for tackling hard, and
complex optimization problems. Nature inspired al-
gorithms are the outcomes of such research activity.
These algorithms can be broadly classified into two
categories: evolutionary computing methods, and
swarm intelligence algorithms, both of which em-
ploy their own set of control parameters.

The underlying idea behind evolutionary algo-
rithms is the iterative fitness improvement of a popu-

1

lation of individuals (solutions), through natural se-
lection. An iteration generally involves, producing
new individuals through a series of mutations and re-
combinations, gradually removing lesser fit individ-
uals from the population, and replacing them with
newly generated individuals if their fitness proves
to be better than the individuals they were gener-
ated to replace [1]. The operation of swarm intelli-
gence algorithms may be behaviorally characterized
as a decentralized swarm searching for optimal food
sources (solutions) [2]. The direction of individual
search is influenced by the current location of the in-
dividual, its best location ever, and the location of
the best individual in the whole swarm. The perfor-
mance of both these classes of algorithms is quite
sensitive to their respective control parameter set-
tings, good values of which are problem dependent.
Unless the user has quite an experience in parameter
tuning, finding the best parameter settings for a given
problem through trial and error may prove, at best, an
arduous, and sometimes an infeasible task. A way
out of this conundrum lies in an arrangement that
may alter or adapt these parameters during the course
of the algorithm. Much attention has been paid to
this problem and many adaptive schemes have been
proposed in the past [3]-[7].

Lately, Differential Evolution (DE) [8], an evolu-
tionary algorithm, has established itself as a robust
real parameter optimizer. Intensive research activ-
ity on the subject in the past decade speaks volumes
of its power and popularity. DE has been rigorously
evaluated on a broad range of benchmark problems,
and has been extensively applied to real life scien-
tific, and engineering problems [9]. It also secured
first position in the First International Contest on
Evolutionary Optimization in May 1996 [10].

DE is simple and operates with only a few control
parameters namely scale factor (F), crossover rate
(Cr), and population size (NP). The performance of
DE, as with any evolutionary algorithm, is quite sen-

sitive to the appropriate settings of these parameters
as reported in [1], [11], [12]. A good setting can im-
prove both the convergence speed, and the quality of
the solution. Conversely, a poorly chosen setting of
these parameters can seriously deteriorate the algo-
rithm’s efficacy. Given the importance the parameter
setting carries, choosing effective control parameter
values, at the same time, can be quite a tedious task.

Generally, an effective combination of these pa-
rameters depends upon the problem being tackled,
and necessitates a good amount of user experience.
It would not be inappropriate to remark that the more
informed values of these control parameters are, the
better the results. While the role of good parameter
settings in DE’s performance may be unequivocal,
there is no single accepted scheme to ascertain their
universally applicable or effective values.

As a result, a good deal of research effort has been
spent to devise and further improve the alter/adapt
schemes to automatically find good, and acceptable
values of these control parameters. These methods
were categorized in [1] and [13], into three major
classes:

• Deterministic - the parameters are altered
based on some user defined rules [8], [14].

• Adaptive - the parameters are allowed to adapt
based on some feedback from the algorithm
[15].

• Self-Adaptive - the parameters are encoded
into the solution itself and they evolve as a part
of the general population [16], [17], [18].

During the search process a particular combina-
tion of control parameters and mutation strategy may
prove more favorable than the others [19]. As a
result, many partially [20]-[22] adaptive schemes
that adapt one or more control parameters, and fully
adaptive schemes [23] that adapt mutation strategy

2

and control parameters, have been proposed in the
past.

Our contributions in this paper are as follows: (1)
We investigate the efficacy of employing an adap-
tive mutation strategy module both in presence and
absence of a control parameter adaptation scheme.
Based on empirical results obtained through exper-
imentation, we create a pool of successful muta-
tion strategies. (2) We propose a memory based
fully adaptive version of Differential Evolution, SA-
SHADE, that adapts the control parameters to their
appropriate values and chooses the best suited mu-
tation strategy from the pool. This variant of DE is
quite different from previous work. (3) Empirical re-
sults are obtained using 28 benchmark functions in
order to show the efficacy of our approach.

The rest of this paper is structured as follows. Sec-
tion II describes the basic DE algorithm. In Section
III, related work is presented. Section IV presents
the empirical results for building a case for strategy
adaptation irrespective of parameter adaptation. In
Section V, SA-SHADE is described with all its fea-
tures and then compared with state-of-the-art adap-
tive DE variants. Section VI concludes this paper.

2 Differential Evolution

Like any evolutionary algorithm, DE works with
a population of solutions which is expressed as a
set of NP D dimensional real parameter vectors,
X=(x1,....,xNP) where xi (1 ≤ i ≤ NP) is a D dimen-
sional vector. In broadly accepted DE terminology,
each solution is called a vector and we use the terms
solution, individual, and vector interchangeably. Es-
sential steps of DE are explained in Sections 2.1 to
2.4.

2.1 Initialization

Being a global optimizer, DE searches for the opti-
mum in a D dimensional real parameter space RD.
As a first step, a NP number of D dimensional vec-
tors are randomly initialized to form a population.
The idea behind this random initialization is to allow
the population the possibility to cover the complete
landscape of the objective function.

The ith vector (1≤ i≤NP), X i, in the current gen-
eration G can be represented as:

X i
j,G = [xi

1,G,x
i
2,G,x

i
3,G,,x

i
D,G] (1)

Every parameter xi
j in a given vector has a specific

range denoted by xmin
j and xmax

j , within which it has
to be restricted, where 1≤ j ≤ D.

2.2 Mutation

In the most basic arrangement of DE, for each ith

target vector from the current generation, three other
distinct vectors, say X r1, X r2, and X r3 are selected
randomly. The indices r1, r2, and r3 are mutually
exclusive integers randomly chosen from the range
[1, NP], and are also different from the target vector
index i. The donor is then created as:

Di
G = X r1

G +F× (X r2
G −X r3

G) (2)

where F is known as the scale factor. Equa-
tion 2 represents the classic DE mutation strategy
DE/rand/1 [24] where rand means that parents are
selected randomly, and 1 signifies the presence of
only one differential perturbation. There are other
strategies suggested by authors in [8], [24], but
DE/rand/1 is the most widely used [11], [12], [28].

2.3 Crossover

To improve the potential diversity of the population,
after the mutation step, a crossover operation is per-
formed on every pair of target vector, X i

G, and its

3

corresponding donor vector, Di
G. In this step, param-

eters either from the target vector, X i
G, or the donor

vector, Di
G, are selected based on some probability

distribution to form a trial (child) vector, TG. There
are two commonly employed crossover operations in
DE literature [14]. One of them, known as binomial
or uni f orm crossover may be elucidated as:

T i
j,G =

Di

j,G if randi
j[0,1]≤Cr or j = jrand

X i
j,G otherwise

(3)
where T i

G is the trial vector generated for the ith
target vector, X i

G, for generation G, randi
j [0,1] is

a randomly generated real number ranging between
the interval [0,1], and is generated newly for every
jth parameter of the target vector. The number jrand ,
is a randomly chosen index between [1,D] to ensure
that the trial vector gets at least one element from the
donor vector.

The other crossover method frequently used is the
exponential or the two-point modulo crossover in
which a random integer n1 is chosen from the in-
terval [1, D] that represents the starting point in the
target vector X i

G from where the crossover operation
would start. After that, another integer n2 is chosen
from the same interval that specifies the number of
parameters that the donor vector Di

G contributes to
the formation of trial vector T i

G. This scheme may be
described as

T i
j,G =

Di

j,G for j = (n1) mod D

X i
j,G otherwise

(4)

A new set of n1 and n2 is chosen for every donor
vector.

2.4 Selection

The objective function is evaluated for all trial vec-
tors in this step. The fitness value of each target vec-

tor is compared to its corresponding trial vector. If
the fitness (considering a minimization problem) of
the trial vector is better or at least equal to the target
vector, it moves to the next generation. Otherwise
the target vector is promoted and trial vector is dis-
carded.

X i
G+1 =

T i

G if f (T i
G)≤ f (X i

G)

X i
G otherwise.

(5)

The mutation, crossover, and selection steps are it-
eratively performed generation after generation until
a stopping criterion specified by the user is met.

3 Related Work

It is an established notion that the performance of DE
depends greatly on the mutation strategy employed,
and the corresponding control parameters [11], [12],
[30], [32]. As the complexity of the problem in-
creases, this dependence becomes even more pro-
found [12]. A good choice of mutation strategy and
control parameters can lead to better results, and at
the same time, an unfavorable choice may seriously
degrade DE’s performance [14], [21], [25]. Choos-
ing a good mutation strategy and associated control
parameters is not an easy task and requires quite a bit
of user experience. A good amount of research ac-
tivity has happened in the area of determining good
values of the control parameters. Authors in [26]
suggested that good values of F lie between 0.4 and
0.95. For Cr, they ascribed the range (0,0.2) for sep-
arable functions and (0.9,1) for non-separable func-
tions. On the other side of the spectrum, the au-
thors in [12] suggested good value of F to be 0.6
and Cr ranging between [0.3,0.9]. As can be seen,
these suggestions differ, and sometimes, are conflict-
ing at best. This situation naturally calls for adaptive

4

Algorithm 1 PSEUDO-CODE FOR DE
1: Set the values of control parameters scale factor (F),

crossover rate (Cr), and population size (NP)
2: Set generation number, G=0
3: Initialize a population of NP individuals P =

[X1,X2, ...XNP] where every ith individual is a D di-
mensional vector represented as X j

i =[x1
i , x2

i ... xD
i]

where 1≤ j≤D; restrict x j
i to its minimum and max-

imum bounds as x j
i,min and x j

i,max.
4: while stopping criteria is not met do
5: for every target vector Xta in P do
6: Select three vectors Xr1 ,Xr2 ,Xr3 where r1,r2,

and r3 are three mutually exclusive indices and
different from target index

7: //Mutation
8: Produce a donor vector through mutation as:
9: Xdo = Xr1 +F× (Xr2 −Xr3)

10: //Crossover
11: Produce a trial vector as:

X j
tr =

{
X j

do if rand j(0,1]≤Cr or j = jrand

X j
ta otherwise

12: //Selection
13: Select either the target vector or the trial vector

based on their fitness values as:

XG+1
survivor =

{
XG

tr if F(XG
tr)≤ F(XG

ta)
XG

ta otherwise

14: end for
15: end while

mechanisms that would require little or no user in-
tervention in setting up the control parameters while
optimizing with DE.

Much work has been reported on this problem of
automating mutation strategy and control parameters
[19], [27], [28], [29]. A fuzzy adaptive differen-
tial evolution with fuzzy logic controllers was pre-
sented in [27] where F and Cr are adapted based
on the relative fitness values and individuals of sub-
sequent generations. Authors developed linguistic
fuzzy sets to encode knowledge by taking into con-
sideration the noise and non-linearity of the objec-
tive function. Qin et al. [30] proposed a memory
based self adaptive differential evolution (SaDE) al-
gorithm. They adapted the mutation strategy depend-
ing upon its success history. The mutation strategy is
chosen from a pool and successful strategies and Cr
values are recorded. The subsequent mutation strat-
egy is selected probabilistically based on its ability to
produce successful trials. The scale factor, F , is not
adapted and instead randomly sampled from the nor-
mal distribution (0.5,0.3). The idea was to employ
exploration (large F values) and exploitation (small
F values) throughout the search process. The suc-
cessful values of the crossover rate, Cr, on the other
hand, are stored in a memory bank, and new val-
ues of Cr are generated from the normal distribution
N(Crm,0.1), where Crm is the median Cr value in the
memory bank m. A small value of standard deviation
0.1 was chosen to guarantee that most of the Cr val-
ues generated by N(Crm,0.1) are between [0,1], even
when Crm is close to 0 or 1.

In the self-adaptive scheme, jDE, proposed by
Brest et al. [17], F and Cr are encoded directly into
the individuals so that individuals with better val-
ues of these parameters are more likely to survive,
thus automatically retaining good parameter values,
increasing the length of the vector. Two new param-
eters τ1 and τ2 are introduced to control the values of

5

F and Cr as

F i
G+1 =

Fl + randl×Fu with probability τ1

F i
G otherwise

(6)

Cri
G+1 =

rand2 with probability τ2

Cri
G otherwise

(7)

where Fl and Fu are the lower and upper limits
of F restricted to the range [0,1]. The authors used
τ1=τ2=0.1 with Fl=0.1 and Fu=0.9. Thus, essentially
F (0.1,0.9) and CR (0,1) are restricted to their respec-
tive ranges. It should be noted that this scheme has
four extra parameters to be set namely Fl , Fh, τ1, and
τ2, which might pose a problem in itself. The au-
thors, in this case, opined to have used only a single
setting for them and kept them constant throughout
the search. Recently a large scale study of τ1, and τ2
was conducted in [18].

A fitness based adaptation of F was proposed in
[31]. Cr was fixed at 0.5. The mechanism comprised
of two evolving populations. After every generation,
F was updated as,

F =

max(lmin,1− fmax

fmin
) if fmax

fmin
< 1

max(lmin,1− fmin
fmax

) otherwise
(8)

where fmin and fmax are the generational minimum
and maximum objective function values obtained by
the individuals over the populations and lmin is the
lower bound on F .

In [32], authors proposed a scheme wherein F was
reduced linearly with an increase in the number of
function evaluations. The idea was to use high val-
ues of F during the exploration stage and small val-
ues during the exploitation state in the later part of

the search. Dawar et al. in [33] proposed a simi-
lar technique with the difference that they used ran-
dom perturbation of F in the initial stages of the
search, and reduced F non-linearly afterwards. Both
of the above approaches demonstrated favorable per-
formance over conventional DE.

Authors in [20] proposed another adaptive version
of DE named SDE, in which F and population size
NP were adapted but Cr was sampled from a normal
distribution N(0.5,0.15). SDE was reported to have
outperformed other basic versions of DE described
in [8]. On similar lines, DESAP (Differential evolu-
tion with self adaptive population size) was proposed
by Teo [34] in which the population size, NP was
adapted alongside F and Cr. Population size reduc-
tion has also been reported to have a favorable effect
on the performance of DE as argued in [35]. Authors
of the same work reported an improvement in both
efficiency and robustness of DE when NP is gradu-
ally reduced.

Another novel adaptive mechanism proposed in
[23] uses three different pools of values, one for
each mutation strategy, F , and Cr, respectively. The
F pool contained the values in the range [0.4,0.9]
with an increment of 0.1, and the CR pool had
values in the range [0.1,0.9] with 0.1 increments.
The mutation strategy pool contained three strate-
gies namely rand/1/bin, best/2/bin, and current-to-
rand/1/bin. Initially every individual is randomly as-
signed a set of [F , Cr, Ms] and during the search
successful sets are carried forward to the next gener-
ation while unsuccessful sets are re-initialized. The
parameter Ms in the set denotes a mutation strategy.

In [36], the authors presented an adaptive scheme,
JADE, and also proposed a new mutation strategy
current-to-pbest/1. The scheme also included a di-
versity maintenance mechanism by keeping an op-
tional external archive of unsuccessful parents that
were unable to move to the next generation owing to
their worse fitness. The mutation strategy current-to-

6

pbest/1 that the authors employed is different from
the basic current-to-pbest/1 strategy in the sense that
the individual pbest can be selected from a user con-
trolled set of top individuals instead of representing
just the top individual. The search mechanism of
current-to-pbest/1 is quite greedy in nature and ex-
perimentally, it has been shown that this greediness
often leads to poor performance on multimodal func-
tions [37]. In other words, the greediness of this ba-
sic mutation strategy can be controlled to some ex-
tent in the new version. The donor from current-to-
pbest/1 is obtained as,

Di,G = Xi,G +Fi× (Xpbest,G−Xi,G)+Fi× (Xr1,G−Xr2,G)
(9)

where the individual xpbest,G is randomly selected
from the top NP×n (n ∈ [0,1]) members in the G-th
generation. Here, n may be regarded as the greedi-
ness control operator. The authors adopted a mem-
ory based control parameter adaptation scheme. F
and Cr were drawn from a normal N (µF ,0.1) and
a cauchy C (µCr,0.1) distribution respectively where
µF and µCr are the respective mean values of the dis-
tributions. At the beginning of the search, µF and µCr

are initialized to 0.5 and adapted thereafter as

µCr = (1− c)µCr + c.A(SCr) (10)

µF = (1− c)µF + c.L(SF) (11)

where c is the learning rate which was suggested
to be set to 0.1. SF and SCr are the successful values
stored in the memory during the generation. A and L
are the arithmetic and Lehmer means, respectively.

Several extensions to JADE have been proposed.
Authors in [38] propose a restart strategy for JADE
and also suggest replacing the arithmetic mean in
Equation 10 by a weighted mean, where higher
weights are assigned to Cr values that achieve a
higher fitness difference. A co-evolutionary exten-
sion to JADE was proposed in [39]. In [40], authors

adaptively select the mutation strategy to be applied
among current-to-pbest/1 with/without the external
archive, and rand-to-pbest/1 with/without the exter-
nal archive. JADE has also been successfully ap-
plied to combinatorial and multi-objective optimiza-
tion problems [41], [42].

In another memory based parameter adaptation
scheme called success history based adaptive DE
(SHADE) [43], authors improve upon the robustness
of JADE. They argue that the continuous mean up-
date mechanism used in JADE may allow unfavor-
able values of F and CR to impact their mean value
thereby allowing the possibility of a degraded search
performance. They maintain a historical memory
of means as MF , and MCr which are the success-
ful values of means calculated from SF and SCr. In
essence, SHADE maintains a pool of successful pair-
wise means in contrast with JADE, which works with
a single pair of means. In case an unfavorable set of
µF and µCr are recorded, its impact would be far less
profound as there may be other successful and favor-
able means in the pool to offset this disadvantage.
SHADE was shown to have outperformed JADE in
[44].

Apart from F and Cr, adaptation of population
size NP has also received much attention. The popu-
lation size significantly impacts the convergence rate
of any evolutionary algorithm, with DE being no ex-
ception. A smaller value of population size, NP,
tends to favor exploitation and the solution converges
faster while always breaming with the possibility
of getting stuck in a local minima. Large popula-
tion sizes favor exploration of the landscape thereby
slowing down the convergence rate. Many popula-
tion resizing methods have been proposed that have
shown to be effective in improving the performance
of evolutionary algorithms [35], [45]-[48]. These
methods of population size reduction are essentially
deterministic instead of adaptive, as they increase or
decrease the population size based on some prede-

7

fined rules.
One of such techniques named Linear Population

Size Reduction (LPSR) was incorporated by authors
in [49] to enhance the performance of SHADE. Au-
thors in [50] proposed jDEdynNP, a self adaptive
version of DE, in which F and Cr are self adapted
and a population size reduction technique is used.
This algorithm is further extended to work with mul-
tiple mutation strategies in [51] but these mutation
strategies are not adapted. Population size adapta-
tion has not been investigated in this work.

4 Experimentation And Results

4.1 Benchmark Functions

To gauge the impact of strategy adaptation with and
without adapting F and Cr, we first evaluated five
basic mutation strategies on 28 benchmark functions
listed in [52] at problem dimensionality 10, 30, and
50 results of which are tabulated in Tables 1, 2, and
3, respectively, and are discussed in the next section.
The parameter values used in this experiment were
NP=100, F=0.5 and Cr=0.9 as suggested in [43],
[53].

4.2 Relative performance of basic strategies

We initially experimented with five basic mutation
strategies described below. Uniform crossover and
population size of 100 was used with every mutation
strategy.

Rand/1:

Xi = Xr1 +F× (Xr2−Xr3) (12)

Rand/2:

Xi = Xr1 +F× (Xr2−Xr3)+F× (Xr4−Xr5) (13)

Best/2:

Xi = Xbest +F× (Xr1−Xr2)+F× (Xr3−Xr4) (14)

CurrToBest:

Xi = Xtarget +F× (Xbest −Xtarget)+F× (Xr1−Xr2)
(15)

RandToBest:

Xi = Xr1 +F× (Xbest−Xr2)+F× (Xr3−Xr4) (16)

Our first experiment led to a generally accepted
result that different mutation strategies perform dif-
ferently on different problems. Table 4 summarizes
the relative performance of the basic mutation strate-
gies as the ranks obtained by applying Friedman test
[54] at problem dimensionality 10, 30, and 50.

The Friedman test [54] is a multiple compar-
isons procedure that aims to detect significant per-
formance differences between the k compared algo-
rithms where k ≥ 2. It calculates the relative ranks
of the algorithms through an average ranking proce-
dure and computes the Friedman statistic, which is
further used to calculate the p value [58]. The Fried-
man statistic is computed as:

Fs =
12np

na(na +1)
[ΣR2

i −
na(na +1)2

4
] (17)

where np is the number of test problems, na is the
number of algorithms being compared, and Ri is the
relative rank of the ith algorithm.

The statistic Fs is distributed according to the χ2

distribution with na−1 degrees of freedom, when np

> 10 and na > 5. If the number of algorithms and test
problems are small, then critical values have been
computed and presented, see [55], [56] for more de-
tails.

It is clear that Rand/1 is relatively the most con-
sistent strategy across problem dimensionality. The
next question one might ask - “Is the performance of
Rand/1 statistically significant?”. The experimental
results pertaining to this question are shown in Table
5 which contains the p-values (for α = 0.05) obtained

8

Table 1: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 10. Reported values are the averages
of 51 independent runs for each function. Error values reaching 10−8 of the global optimum of the function are
reported as 0.00+E00. The best result is highlighted in bold.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 3.54E+00 3.40E-06 3.36E+04 9.03E+02
3 5.21E-01 5.23E+03 1.38E-01 1.30E+06 2.76E+05
4 0.00E+00 1.87E-02 2.26E-08 2.33E+02 3.04E+01
5 0.00E+00 0.00E+00 0.00E+00 6.33E-01 3.25E-04
6 4.50E-03 1.64E-06 0.00E+00 6.37E+00 7.66E+00
7 4.80E-04 1.29E+00 7.71E-02 5.07E-02 7.39E-05
8 2.04E+01 2.04E+01 2.04E+01 2.04E+01 2.04E+01
9 1.93E-01 6.75E+00 4.88E+00 8.65E-01 5.57E-01
10 3.60E-01 5.39E-01 5.47E-01 5.16E-03 1.07E-02
11 1.73E+01 2.49E+01 2.22E+01 2.03E+00 8.24E+00
12 2.59E+01 3.23E+01 3.21E+01 1.02E+01 1.54E+01
13 2.59E+01 3.14E+01 2.96E+01 1.01E+01 1.70E+01
14 1.02E+03 1.28E+03 1.24E+03 7.88E+02 1.01E+03
15 1.25E+03 1.36E+03 1.37E+03 1.04E+03 1.16E+03
16 9.99E-01 1.14E+00 1.15E+00 9.48E-01 9.69E-01
17 3.07E+01 3.99E+01 3.54E+01 1.76E+01 1.80E+01
18 3.58E+01 4.60E+01 4.19E+01 2.56E+01 2.46E+01
19 1.84E+00 2.62E+00 2.45E+00 1.41E+00 1.64E+00
20 2.54E+00 2.95E+00 2.65E+00 1.95E+00 2.09E+00
21 3.72E+02 3.05E+02 3.81E+02 4.00E+02 4.00E+02
22 9.47E+02 1.44E+03 1.29E+03 3.39E+02 9.11E+02
23 1.16E+03 1.39E+03 1.33E+03 5.83E+02 9.39E+02
24 1.98E+02 2.05E+02 2.05E+02 2.01E+02 2.01E+02
25 2.00E+02 2.00E+02 2.02E+02 2.00E+02 2.00E+02
26 1.26E+02 1.39E+02 1.46E+02 1.23E+02 1.18E+02
27 3.00E+02 3.07E+02 3.00E+02 3.05E+02 3.00E+02
28 2.52E+02 2.90E+02 2.52E+02 3.00E+02 3.00E+02

9

Table 2: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 30D. Reported values are the
averages of 51 independent runs for each function. Error values reaching within 10−8 of the global optimum of the
function are reported as 0.00+E00. The best result is highlighted in bold.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 2.40E-01 0.00E+00 1.18E+02 5.95E+02
2 5.09E+05 3.72E+07 1.41E+06 4.21E+06 3.16E+06
3 2.29E-02 1.71E+09 5.26E+04 1.97E+09 1.91E+09
4 9.98E+02 3.54E+04 7.30E+03 4.56E+03 2.63E+03
5 0.00E+00 5.06E-01 4.83E-10 2.43E+02 4.21E+02
6 9.21E+00 1.80E+01 6.26E+00 1.04E+02 1.08E+02
7 1.00E-01 5.82E+01 9.91E+00 1.79E+01 1.15E+01
8 2.09E+01 2.09E+01 2.10E+01 2.09E+01 2.09E+01
9 2.25E+01 3.89E+01 3.84E+01 8.68E+00 1.04E+01
10 5.40E-03 2.55E+01 1.39E-04 5.80E+01 9.98E+01
11 1.23E+02 2.10E+02 1.87E+02 2.06E+01 8.89E+01
12 1.77E+02 2.26E+02 1.98E+02 7.71E+01 1.60E+02
13 1.72E+02 2.28E+02 1.98E+02 1.37E+02 1.66E+02
14 6.25E+03 6.81E+03 6.85E+03 6.22E+03 6.43E+03
15 7.12E+03 7.31E+03 7.22E+03 6.57E+03 6.84E+03
16 2.49E+00 2.45E+00 2.57E+00 2.48E+00 2.51E+00
17 1.83E+02 2.69E+02 2.23E+02 1.59E+02 1.67E+02
18 2.12E+02 2.83E+02 2.31E+02 1.78E+02 1.86E+02
19 1.50E+01 2.04E+01 1.73E+01 3.44E+01 3.43E+01
20 1.21E+01 1.27E+01 1.26E+01 1.21E+01 1.24E+01
21 2.91E+02 3.12E+02 3.10E+02 6.69E+02 6.67E+02
22 6.45E+03 6.95E+03 6.90E+03 4.52E+03 5.89E+03
23 7.14E+03 7.23E+03 7.08E+03 6.10E+03 6.68E+03
24 2.00E+02 2.70E+02 2.06E+02 2.17E+02 2.21E+02
25 2.39E+02 2.82E+02 2.51E+02 2.47E+02 2.45E+02
26 2.00E+02 2.03E+02 2.00E+02 2.00E+02 2.11E+02
27 3.37E+02 1.17E+03 5.93E+02 5.13E+02 4.64E+02
28 3.00E+02 3.25E+02 3.00E+02 3.25E+02 9.93E+02

10

Table 3: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest at 50D. Reported values are the
averages of 51 independent runs for each function. Error values reaching within 10−8 of the global optimum of the
function are reported as 0.00+E00. The best result is highlighted in bold.

Function Rand/1 Rand/2 Best/2 RandToBest CurrToBest
1 0.00E+00 7.13E+01 0.00E+00 1.44E+03 3.55E+03
2 2.70E+06 2.30E+08 2.23E+07 1.76E+07 1.07E+07
3 3.36E+05 3.15E+10 3.90E+06 8.89E+09 1.07E+10
4 2.10E+04 7.38E+04 4.32E+04 4.50E+03 3.47E+03
5 0.00E+00 1.84E+01 8.11E-09 5.56E+02 9.32E+02
6 4.34E+01 6.04E+01 4.34E+01 2.17E+02 2.54E+02
7 1.03E+00 1.24E+02 2.03E+01 2.86E+01 2.98E+01
8 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01
9 7.04E+01 7.23E+01 7.23E+01 2.36E+01 2.39E+01
10 4.06E-02 4.63E+02 1.42E-02 3.08E+02 4.17E+02
11 2.16E+02 4.32E+02 3.65E+02 6.69E+01 8.27E+01
12 3.61E+02 4.77E+02 3.86E+02 7.87E+01 2.34E+02
13 3.51E+02 4.79E+02 3.83E+02 3.14E+02 3.68E+02
14 1.13E+04 1.30E+04 1.30E+04 1.21E+04 1.26E+04
15 1.39E+04 1.39E+04 1.39E+04 1.31E+04 1.35E+04
16 3.33E+00 3.17E+00 3.32E+00 3.31E+00 3.36E+00
17 3.30E+02 5.45E+02 4.19E+02 3.48E+02 3.81E+02
18 4.01E+02 5.60E+02 4.43E+02 3.75E+02 3.97E+02
19 2.97E+01 4.93E+01 3.36E+01 4.54E+02 1.34E+03
20 2.21E+01 2.27E+01 2.24E+01 2.06E+01 2.07E+01
21 4.06E+02 4.31E+02 2.74E+02 2.06E+03 2.30E+03
22 1.08E+04 1.34E+04 1.32E+04 3.88E+03 1.19E+04
23 1.37E+04 1.39E+04 1.39E+04 1.23E+04 1.30E+04
24 2.07E+02 3.61E+02 2.14E+02 2.60E+02 2.68E+02
25 2.78E+02 3.81E+02 3.13E+02 3.31E+02 3.31E+02
26 2.45E+02 3.45E+02 3.76E+02 3.15E+02 2.90E+02
27 5.71E+02 2.04E+03 1.22E+03 8.96E+02 9.57E+02
28 4.00E+02 4.59E+02 4.00E+02 1.26E+03 1.53E+03

11

Table 4: Relative ranks obtained by Rand/1, Rand/2,
Best/2, RandToBest, and CurrToBest at 10D, 30D, and
50D respectively. The best rank is highlighted in bold.

Strategy Rank-10D Rank-30D Rank-50D
Rand/1 2.46 2.01 2.00
Rand/2 3.97 4.14 4.23
Best/2 3.5 3.08 3.08

RandToBest 2.5 2.58 2.41
CurrToBest 2.57 3.16 3.26

by applying the Hochberg post hoc method [57] over
the results of Table 1, 2, 3, respectively.

Given a control algorithm, the Hochberg method
tries to identify the algorithms that are better or
worse by calculating p multiple values. The
Hochberg method adjusts the value of α in a step up
way. It works by comparing the largest p-value with
α, the next largest with α/2, the next with α/3, and
so forth until it finds a hypothesis that definitely re-
ject it. All hypotheses with smaller p-values are then
rejected as well [58].

Table 5: p values obtained using Hochberg procedure by
mutation strategies Rand/2, Best/2, RandToBest and Cur-
rToBest when compared to Rand/1 at 10D, 30D, and 50D
respectively at α level 0.05.

Strategy pHoc-10D pHoc-30D pHoc-50D

Rand/2 0.001 0.000 0.000
Best/2 0.042 0.020 0.019

RandToBest 0.932 0.176 0.331

CurrToBest 0.932 0.022 0.008

The results in Table 5 show that Rand/1 signifi-
cantly outperforms Rand/2 and Best/2 at every prob-
lem dimension. At 10 dimensions there is not much
of a performance difference between Rand/1, Rand-
ToBest, and CurrToBest. At 30 dimensions though,
Rand/1 significantly outperforms CurrToBest, and

RandToBest remains the only competitive strategy
against Rand/1, and this observation is repeated at
50 dimensions.

The first inference that can be drawn from these
results is that for the given number of function eval-
uations and in the absence of control parameter adap-
tation, Rand/1 remains the most competitive strategy
across problem dimensionality, and the relative com-
petitiveness of Rand/1 against Rand/2, Best/2, and
CurrToBest marginally improves with an increase in
problem dimensionality. RandToBest stands at sec-
ond rank according to the Friedman ranking proce-
dure but statistically inseparable when compared to
Rand/1.

The performance of Best2 relative to CurrToBest
improves as problem dimensionality increases as it
is ranked 3 at 50 dimensions as compared to 4 at 30
dimensions. Rand2 turns out to be the worst per-
forming strategy at every problem dimensionality.

To ascertain the relative competitiveness of Rand-
ToBest and CurrToBest at 30D and 50D, we per-
formed the Wilcoxon test, and the results are pre-
sented in Table 6.

Table 6: Results obtained by the Wilcoxon test for strat-
egy RandToBest against CurrToBest

Problem Dimensionality Asymptotic P-value

30 0.070897

50 0.001324

Table 6 shows that RandToBest turns out to be a
better performing strategy, significantly outperform-
ing CurrToBest at 50 (α=0.05) and 30 (α=0.1) di-
mensions.

12

4.3 A case for strategy adaptation irrespec-
tive of parameter adaptation

Looking at the above results, one may surmise that
Rand1 is relatively the most robust strategy, and can
be used with confidence while optimizing with DE.
This observation, however, requires greater scrutiny.
Table 7 shows the number of wins scored by all the
mutation strategies at 10, 30, and 50 dimensions.
Functions on which multiple strategies score equally
are not counted as wins.

Cumulative results presented in Tables 5 and 7
coupled with works reported in [19], [30] are indica-
tive that no single strategy has the ability to perform
relatively better on all the problems. This is evidence
that calls for automating the selection of mutation
strategies during the course of the search.

It must be noted that several works in the past [37],
[59], [60] have evaluated multiple variants of DE on
various real life and benchmark functions, and have
arrived at seemingly contrasting results, possibly due
to varying test subjects and problems. For exam-
ple, authors in [59] reported that DE/Best/* variants
perform much better than DE/Rand/* variants on the
problem of optimal design of shell-and-heat tube ex-
changers. On similar lines as ours, authors in [60]
report superior performance of DE/Rand/1/bin.

As is clear from the literature, the different strate-
gies seem to work well on different problems, and
different authors report possibly contrasting claims,
a possible reason of which might be different prob-
lem sets they worked upon. All in all, in light of
these multi-faceted issues, it would be prudent to let
the mutation strategy adapt during the search opera-
tion. Strategy adaptive variants proposed in the past
[19], [30], [61], [62], [63] have reported favorable
results.

4.4 Impact of mutation strategy on adaptive
control parameter models

To ascertain the importance of mutation strategy em-
ployed while using adaptive control parameters (F
and Cr) models, we performed experiments on the
same test suite, but this time we used a control pa-
rameter adaptive model, SHADE, proposed in [43].
The choice of this model was based on the superior
performance this demonstrated over other adaptive
models as is evident from the work in [43]. After
making this choice, we asked the following ques-
tions.

1. What impact does a mutation strategy have on
the assessed performance of the algorithm with
adapted control parameters?

2. Is the impact profound enough to necessitate
automated strategy selection?

To answer the first question we tested the adaptive
model with multiple mutation strategies at problem
dimensionality 10, 30, and 50, the results of which
are presented in Tables 8, 9, and 10, respectively. Ta-
ble 11 and 12 show the ranks and p values obtained
using the Friedman and Hochberg test respectively,
for the tested mutation strategies at problem dimen-
sionality 10, 30, and 50, respectively.

It is worth noting that SHADE used
CurrentTopBest as the mutation strategy that
used an external archive of inferior solutions, and
draws the pbest vector from the top x% individuals
in the population. Results from Tables 11 and 12
show that when a control parameter adaptation
model is used, the strategy used in SHADE is
ranked at the top of the strategies tested, and proves
vastly superior to Rand1, Rand2, and Best2 at
every problem dimensionality. It, however, is not
significant when compared to CurrentToBest and
RandToBest as is clear from the p values shown in
Table 12.

13

Table 7: Number of wins scored, out of 28, by all mutation strategies at 10, 30, and 50 dimensions, respectively.

Dimensions Rand/1 Rand/2 Best/2 RandToBest CurrToBest

10 5 1 2 12 3

30 11 1 2 10 0

50 13 1 2 9 1

There are two important inferences that can be
drawn from these results.

• With or without a given parameter adaptation
model, the choice of mutation strategy plays an
important role in determining the quality of so-
lutions.

• Given the control parameter adaptation scheme
that we have used, RandToBest and Current-
ToBest tend to perform relatively better that
Rand1, which according to the results tabulated
earlier, was the most robust strategy in absence
of parameter adaptation.

Table 13 shows the number of wins scored by each
strategy and provides some insights into investigat-
ing the plausibility of automated strategy selection
vis-a-vis control parameter adaptation.

As is clear from the results in Table 12 and 13,
even though the strategy used in SHADE is high-
est ranked, there is a possibility of further improv-
ing SHADE by automating the selection of mutation
strategy as the cumulative wins scored by all strate-
gies at every problem dimensionality is greater than
the wins recorded by SHADE.

5 SA-SHADE Algorithm: Improve-
ments with strategy adaptation

Motivated by the results presented in the previous
section, we investigated the benefits of plugging a

strategy adaptation module in the original SHADE
algorithm.

We propose SA-SHADE, a memory based adap-
tive version of Differential Evolution wherein F , Cr,
and mutation strategy are adapted during the search
process. The basis of our paper is the SHADE al-
gorithm [43], which adapts F and Cr but uses a fixed
mutation strategy which is current-to-pbest/1 with an
optional external archive that was originally used in
[36]. SA-SHADE and SHADE differ on three as-
pects.

• SA-SHADE adapts the mutation strategy dur-
ing the search process, while SHADE uses a
single mutation strategy throughout the search
process.

• SA-SHADE uses the mode of successful muta-
tion strategies to update its memory, which is
slightly different from the way F and Cr are
adapted in SHADE.

• The learned memory of successful strategies in
SA-SHADE is wiped out after a certain num-
ber of function evaluations which is determined
by the reset rate R. In SHADE, on the other
hand, such reset is not performed for updating
the memory of successful F and Cr values.

The operation of SA-SHADE is described as fol-
lows. First, we select the mutation strategies to be
included in the pool P, which are, of course, selected
on the basis of their relative strengths as described

14

Table 8: Performance of Rand/1, Rand/2, Best/2, RandToBest, CurrentToBest, and SHADE at 10D when employed
with adaptive control parameter model used in SHADE. Reported values are the averages of 51 independent runs for
each function. Error values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The
best result is highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 2.30E+01 1.39E+04 2.08E-05 6.11E-01 3.13E-01 1.27E-01
4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 8.88E+00 8.41E+00 9.81E+00 9.35E+00 8.41E+00 7.89E+00
7 3.18E-01 9.09E-01 1.16E-04 2.60E-05 4.26E-02 3.26E-03
8 2.04E+01 2.04E+01 2.04E+01 2.03E+01 2.03E+01 2.04E+01
9 4.16E+00 4.81E+00 4.01E+00 3.64E+00 3.48E+00 3.39E+00
10 4.74E-02 6.42E-02 6.42E-02 1.70E-02 1.02E-02 1.20E-02
11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 8.48E+00 1.05E+01 9.00E+00 5.27E+00 3.55E+00 3.14E+00
13 1.20E+01 1.31E+01 1.50E+01 7.48E+00 4.98E+00 3.77E+00
14 0.00E+00 2.73E-02 2.83E-04 5.95E-03 0.00E+00 4.90E-03
15 7.21E+02 7.19E+02 7.01E+02 6.27E+02 4.57E+02 4.21E+02
16 1.01E+00 1.16E+00 1.05E+00 8.92E-01 4.99E-01 7.08E-01
17 1.01E+01 1.00E+01 1.01E+01 1.01E+01 1.01E+01 1.01E+01
18 2.29E+01 2.17E+01 1.88E+01 1.78E+01 1.77E+01 1.69E+01
19 4.11E-01 4.66E-01 4.30E-01 3.65E-01 3.32E-01 3.44E-01
20 2.54E+00 2.80E+00 2.32E+00 2.24E+00 2.38E+00 2.16E+00
21 4.00E+02 3.53E+02 3.81E+02 4.00E+02 4.00E+02 4.00E+02
22 1.70E+01 5.86E+01 3.80E+01 5.58E+00 1.06E+01 4.84E+00
23 7.71E+02 8.13E+02 6.94E+02 5.98E+02 5.42E+02 4.61E+02
24 2.06E+02 1.98E+02 2.06E+02 2.00E+02 1.93E+02 1.93E+02
25 2.01E+02 2.00E+02 2.03E+02 2.00E+02 2.00E+02 2.00E+02
26 1.12E+02 1.22E+02 1.24E+02 1.07E+02 1.05E+02 1.33E+02
27 3.00E+02 3.30E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02

15

Table 9: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest at 30D when employed with adap-
tive control parameter model used in SHADE. Reported values are the averages of 51 independent runs for each
function. Error values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The best
result is highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.89E+06 1.72E+07 1.11E+07 3.78E+04 1.77E+04 9.00E+03
3 4.36E+06 7.06E+07 5.89E+05 1.37E+05 1.31E+05 4.02E+01
4 2.55E+04 2.25E+04 1.61E+04 2.45E+03 1.64E-01 1.92E-04
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 1.42E+01 1.49E+01 1.23E+01 1.47E+01 8.42E+00 5.96E-01
7 2.43E+01 3.59E+01 5.09E+00 1.97E+00 3.18E+00 4.60E+00
8 2.09E+01 2.10E+01 2.09E+01 2.06E+01 2.06E+01 2.07E+01
9 2.79E+01 2.81E+01 2.80E+01 2.74E+01 2.74E+01 2.75E+01
10 1.23E+00 1.00E+01 8.69E-02 1.72E-01 1.07E-01 7.69E-02
11 0.00E+00 0.00E+00 3.79E-01 0.00E+00 0.00E+00 0.00E+00
12 6.28E+01 6.13E+01 4.54E+01 2.52E+01 2.44E+01 2.30E+01
13 9.42E+01 9.67E+01 8.57E+01 5.47E+01 5.20E+01 5.03E+01
14 1.09E-02 3.60E+00 1.55E+00 2.08E-02 8.92E-03 3.18E-02
15 4.72E+03 4.96E+03 4.57E+03 4.38E+03 3.22E+03 3.22E+03
16 1.43E+00 1.96E+00 1.61E+00 6.09E-01 9.22E-01 9.13E-01
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 1.11E+02 1.42E+02 8.99E+01 6.89E+01 7.36E+01 7.25E+01
19 1.79E+00 1.92E+00 1.80E+00 1.52E+00 1.38E+00 1.36E+00
20 1.17E+01 1.19E+01 1.10E+01 1.04E+01 1.07E+01 1.05E+01
21 2.48E+02 2.74E+02 2.81E+02 2.95E+02 2.97E+02 3.09E+02
22 8.19E+01 2.07E+02 1.52E+02 1.08E+02 9.79E+01 9.81E+01
23 4.83E+03 5.16E+03 4.44E+03 4.57E+03 3.74E+03 3.51E+03
24 2.38E+02 2.66E+02 2.28E+02 2.02E+02 2.05E+02 2.05E+02
25 2.84E+02 2.87E+02 2.85E+02 2.69E+02 2.82E+02 2.59E+02
26 2.06E+02 2.01E+02 2.01E+02 2.15E+02 2.02E+02 2.02E+02
27 9.85E+02 1.01E+03 9.62E+02 3.26E+02 4.60E+02 3.88E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02

16

Table 10: Performance of Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest at 50D when employed with
adaptive control parameter model used in SHADE. Reported values are the averages of 51 independent runs for each
function. Error values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The best
result is highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 3.13E+07 4.93E+07 2.71E+07 1.79E+05 8.70E+04 2.66E+04
3 5.14E+08 2.87E+09 2.85E+06 2.67E+06 6.84E+05 8.80E+05
4 6.14E+04 6.13E+04 3.02E+04 1.24E+04 5.21E-01 1.61E-03
5 0.00E+00 0.00E+00 0.00E+00 6.92E-09 0.00E+00 0.00E+00
6 4.35E+01 4.35E+01 4.34E+01 4.38E+01 4.36E+01 4.28E+01
7 6.15E+01 8.33E+01 2.43E+01 1.62E+01 2.58E+01 2.33E+01
8 2.11E+01 2.11E+01 2.11E+01 2.09E+01 2.08E+01 2.09E+01
9 5.57E+01 5.63E+01 5.52E+01 5.47E+01 5.56E+01 5.54E+01
10 1.27E+01 5.63E+01 1.71E-01 2.50E-01 1.28E-01 7.37E-02
11 0.00E+00 4.74E-02 4.03E+00 0.00E+00 0.00E+00 0.00E+00
12 1.24E+02 1.48E+02 8.25E+01 6.46E+01 6.09E+01 5.86E+01
13 2.03E+02 2.07E+02 1.53E+02 1.40E+02 1.50E+02 1.45E+02
14 8.33E-03 1.76E+01 1.25E+01 3.69E-02 1.61E-02 3.45E-02
15 9.22E+03 9.03E+03 9.22E+03 8.79E+03 7.04E+03 6.82E+03
16 2.04E+00 2.12E+00 1.81E+00 1.42E+00 1.22E+00 1.28E+00
17 5.08E+01 5.08E+01 5.08E+01 5.08E+01 5.08E+01 5.08E+01
18 2.33E+02 2.64E+02 1.49E+02 1.16E+02 1.33E+02 1.37E+02
19 3.26E+00 3.59E+00 3.24E+00 2.77E+00 2.74E+00 2.64E+00
20 2.11E+01 2.14E+01 2.07E+01 1.92E+01 1.97E+01 1.93E+01
21 4.94E+02 3.57E+02 5.54E+02 8.15E+02 9.66E+02 8.45E+02
22 3.28E+01 2.35E+02 9.92E+01 1.24E+01 1.50E+01 1.33E+01
23 9.79E+03 1.04E+04 9.28E+03 8.58E+03 8.07E+03 7.63E+03
24 3.22E+02 3.40E+02 2.93E+02 2.21E+02 2.30E+02 2.34E+02
25 3.72E+02 3.74E+02 3.71E+02 3.54E+02 3.74E+02 3.40E+02
26 2.70E+02 2.28E+02 3.07E+02 3.08E+02 2.06E+02 2.58E+02
27 1.67E+03 1.71E+03 1.65E+03 6.99E+02 9.57E+02 9.36E+02
28 4.00E+02 4.00E+02 5.42E+02 4.00E+02 4.00E+02 4.58E+02

17

Table 11: Relative ranks obtained by Rand/1, Rand/2,
Best/2, RandToBest, CurrToBest, and SHADE at 10D,
30D, and 50D. AD is prefixed with basic strategies to
denote their usage with an adaptive control parameter
model. The best rank is highlighted in bold.

Strategy Rank-10D Rank-30D Rank-50D
AD-Rand/1 4.17 4.16 4.30
AD-Rand/2 4.50 5.19 5.00
AD-Best/2 4.05 4.03 4.00

AD-RandToBest 3.16 2.82 2.71
AD-CurrToBest 2.57 2.46 2.71

SHADE 2.53 2.32 2.26

Table 12: p values obtained using Hochberg procedure
by Rand/1, Rand/2, Best/2, RandToBest, and CurrToBest
when compared with SHADE at 10D, 30D, and 50D at α

level 0.05. AD is prefixed with basic strategies to denote
their usage with an adaptive control parameter model.

Strategy pHoc-10D pHoc-30D pHoc-50D

AD-Rand/1 0.004 0.000 0.000

AD-Rand/2 0.000 0.000 0.000

AD-Best/2 0.000 0.000 0.019

AD-RandToBest 0.422 0.317 0.371
AD-CurrToBest 0.943 0.775 0.371

Algorithm 2 PSEUDO-CODE FOR SA-SHADE
1: Set max number of generations Gmax=0
2: Set current generation number, G=0
3: Set memory size M=100, reset rate R=0.1, counter k=1, and initialize external archive A = /0

4: Initialize the mutation strategy pool PMs
5: Initialize a population of NP individuals Pop = [X1 ,X2 , ...XNP] where every ith individual

is a D dimensional vector represented as X j
i =[x1

i , x2
i ... xD

i] where 1≤ j ≤ D. Restrict x j
i to

its minimum and maximum bounds as x j
i,min and x j

i,max

6: Set all values in memory MCr ,MF to 0.5 and randomly initialize MMs with mutation strate-
gies from the pool PMs

7: while G≤ Gmax or required error precision is not achieved do
8: SCr = /0 SF = /0; SMs = /0

9: for every target vector Xi in Pop do
10: Select a random integer r from [1,M]
11: Draw F from a cauchy distribution as C(MF,r ,0.1)

12: Draw Cr from a normal distribution as N(MCr,r ,0.1)

13: Choose a mutation strategy Mi from MMs,r indexed at r

14: Produce a trial vector V G
i , using the control parameters generated and the strategy se-

lected above
15: Select either the target vector or the trial vector based on their fitness values as:

XG+1
i =

{
V G

i if f (V G
i)≤ f (XG

i)

XG
i otherwise

16: //update external archive A
17: if (f (V G

i)< f (XG
i)) then

18: Add XG
i to external archive A

19: Add Cr to the set SCr
20: Add F to the set SF
21: Add Mi to the set SMs
22: end if
23: end for
24: //update memories based on performance
25: if SCr 6= /0 and SF 6= /0 and SMs 6= /0 then
26: Add the most successful strategy, given by mode of successful strategies in SMs to MMs
27: Update MCr and MF based on SCr and SF respectively
28: end if
29: //check for mutation memory reset
30: if G = (k×R)×Gmax then
31: Randomly initialize MMs with mutation strategies from the pool PMs
32: Increase the counter k to k+1
33: end if
34: Increase the generation count G to G+1
35: end while

18

Table 13: Number of wins scored, out of 28, by all mutation strategies and SHADE at 10, 30, and 50 dimensions,
respectively.

D AD-Rand/1 AD-Rand/2 AD-Best/2 AD-RandToBest AD-CurrToBest SHADE

10 0 2 1 1 4 10
30 2 0 0 7 1 10
50 1 1 0 8 4 9

in Section 5.1. We then initialize an integer vector
MMs of size 100, the memory containing successful
mutation strategies after every generation, length of
which is user controlled, with randomly selected mu-
tation strategies from the pool, P. All of the muta-
tion strategies in P are included in MMs at least once.
Then, every individual solution is allowed to ran-
domly choose a mutation strategy from the memory
MMs. During the course of a generation, for every
successful individual, just like F and Cr, we record,
in another integer vector named successful mutation
strategies vector, SMs, the successful mutation strate-
gies over a generation. Then, we store the most suc-
cessful strategy of the generation, given by the mode
of SMs, in the memory MMs.

The distinction between MMs and SMs is as fol-
lows. SMs maintains the record of successful muta-
tion strategies within a generation. The most suc-
cessful strategy in SMs is then recorded in MMs. This
way the most successful of the mutation strategies
are retained in the memory MMs. Successful F and
Cr are recorded in their respective memories ac-
cording to the mechanism proposed in the original
SHADE algorithm [43]. This operation is repeated
until a number of function evaluations are reached
after which the memory MMs is re-initialized. This
resetting of the memory is done to disallow any prob-
abilistic bias created by the system towards a partic-
ular mutation strategy, and we show that this indeed
proves useful. At the same time, it can be argued
that the same reset scheme can be applied to F and

Cr but our experiments show that this proves coun-
terproductive in most of the cases. Hence, we have
steered clear of using this reset method on F and Cr.
SA-SHADE is summarized in Algorithm 2.

5.1 Choice of mutation strategies used in
SA-SHADE

As proven in Section III-B, the choice of muta-
tion strategy has a significant impact on the solu-
tion quality. A good mutation strategy is problem
dependent, i.e., for the one which is successful on
one landscape may prove adverse on others. There
are some characteristics associated with every mu-
tation strategy that may justify its use or otherwise.
For example, double difference vector strategies like
DE/rand/2/bin and DE/best/2/bin exhibit better di-
versity than DE/rand/1/bin and DE/best/1/bin [12],
[15], [25], [24], making them more suitable on
landscapes riddled with local minima. Strategies
that use the best individual to generate mutant like
DE/best/1/bin and DE/rand-to-best/1/bin tend to be
greedy and score well on unimodal problems but
their performance worsens on difficult and highly
multimodal problems. A rotationally invariant strat-
egy, DE/current-to-rand/1/, tends to do better on
rotated problems [64]. The scheme DE/target-to-
best/1/bin with neighborhood search proposed in
[65], provides a good balance between exploration
and exploitation.

Our pool PMs was obviously designed to contain

19

the mutation strategies with diverse capabilities. We
choose the following strategies for the listed reasons.

1. DE/rand/1/: Most widely used, less greedy but
robust.

2. DE/rand/2/: Even though it has a poor record
of achieving good solutions, it has the ability
to improve the diversity of population as it is
capable of generating more trial vectors due to
presence of two difference vectors [8], [12].

3. DE/best/2/: Greedy but also has the ability of
diversity improvement as it utilizes two differ-
ent vectors [8], [12].

4. DE/current-to-pbestWithArchive/: Proposed in
[36] and used in [43] which is the basis of our
paper.

5. DE/current-rand-to-pbest/: A new mutation
strategy that we experimented with, that uses
the target vector as the base vector, a differ-
ence of one of the top 20% of best vectors and
a randomly chosen vector, and another differ-
ence vector of two randomly chosen vectors. It
has proven to be unstable sometimes but has the
capability to negotiate local minima.

Xi =Xtarget +F×(Xpbest−Xr1)+F×(Xr2−Xr3)
(18)

We have incorporated a memory based adaptation
mechanism into SA-SHADE on similar lines as the
memory based adaptation of F and Cr. SHADE does
not adapt the mutation strategy but only F and Cr.

5.2 Results

The comparative results of SA-SHADE with other
variants at 30 dimensions are shown in Table 15. Ta-
ble 14 lists the rank and p values obtained by SA-
SHADE. It is clear that SA-SHADE is the top ranked

algorithm among all the algorithms compared. SA-
SHADE displays an improved performance com-
pared to AD-Rand/1 (α = 0.05), AD-Rand/2 (α =
0.05), AD-Best2 (α = 0.05), AD-RandToBest (α
= 0.05), and AD-CurrToBest (α = 0.1) while be-
ing highly competitive against SHADE. The pre-
fix AD denotes that the algorithm uses the adap-
tive control parameter mechanism. While in previ-
ous results, SHADE was not found to be better than
Ad-RandToBest and AD-CurrToBest at any signif-
icance level, SA-SHADE improves upon SHADE
and shows superior results.

Table 14: Relative ranks obtained by Rand/1, Rand/2,
Best/2, RandToBest, CurrToBest, SHADE, and SA-
SHADE at 30D. AD is prefixed with basic strategies to
denote their usage with an adaptive control parameter
model. The best rank and outperformed algorithms at α

value = 0.05 are highlighted in bold.

Strategy Rank pHoc

AD-Rand/1 4.17 0.00
AD-Rand/2 4.50 0.00
AD-Best/2 4.05 0.00

AD-RandToBest 3.16 0.03
AD-CurrToBest 2.57 0.06

SHADE 2.53 0.26

SA-SHADE 2.28 -

Table 17 shows the relative performance of
SHADE with recently proposed state-of-the-art
adaptive DE mechanisms. It is clear that SHADE,
apart from EPSDE, is not statistically superior when
compared to other algorithms at α = 0.05 or 0.1. SA-
SHADE, with the results listed in Table 18, improves
upon SHADE and shows statistically significant per-
formance against EPSDE, CoDE, and dynNP-jDE
while being highly competitive against JADE and
SHADE. The best rank and outperformed algorithms
at α value = 0.05 are highlighted in bold.

20

Table 15: Performance of parameter adaptive Rand/1, Rand/2, Best/2, RandToBest, and CurrentToBest against
SHADE, and SA-SHADE at 30D. Reported values are the averages of 51 independent runs for each function. Er-
ror values reaching within 10−8 of the global optimum of the function are reported as 0.00+E00. The best result is
highlighted in bold.

F Rand/1 Rand/2 Best/2 RandToBest CurrToBest SHADE SA-SHADE
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.89E+06 1.72E+07 1.11E+07 3.78E+04 1.77E+04 9.00E+03 8.15E+03
3 4.36E+06 7.06E+07 5.89E+05 1.37E+05 1.31E+05 4.02E+01 1.19E+05
4 2.55E+04 2.25E+04 1.61E+04 2.45E+03 1.64E-01 1.92E-04 3.10E-02
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 1.42E+01 1.49E+01 1.23E+01 1.47E+01 8.42E+00 5.96E-01 0.00E+00
7 2.43E+01 3.59E+01 5.09E+00 1.97E+00 3.18E+00 4.60E+00 3.06E+00
8 2.09E+01 2.10E+01 2.09E+01 2.06E+01 2.06E+01 2.07E+01 2.07E+01
9 2.79E+01 2.81E+01 2.80E+01 2.74E+01 2.74E+01 2.75E+01 2.69E+01
10 1.23E+00 1.00E+01 8.69E-02 1.72E-01 1.07E-01 7.69E-02 6.13E-02
11 0.00E+00 0.00E+00 3.79E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 6.28E+01 6.13E+01 4.54E+01 2.52E+01 2.44E+01 2.30E+01 1.82E+01
13 9.42E+01 9.67E+01 8.57E+01 5.47E+01 5.20E+01 5.03E+01 3.84E+01
14 1.09E-02 3.60E+00 1.55E+00 2.08E-02 8.92E-03 3.18E-02 6.34E-01
15 4.72E+03 4.96E+03 4.57E+03 4.38E+03 3.22E+03 3.22E+03 3.24E+03
16 1.43E+00 1.96E+00 1.61E+00 6.09E-01 9.22E-01 9.13E-01 1.01E+00
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 1.11E+02 1.42E+02 8.99E+01 6.89E+01 7.36E+01 7.25E+01 7.17E+01
19 1.79E+00 1.92E+00 1.80E+00 1.52E+00 1.38E+00 1.36E+00 1.33E+00
20 1.17E+01 1.19E+01 1.10E+01 1.04E+01 1.07E+01 1.05E+01 1.03E+01
21 2.48E+02 2.74E+02 2.81E+02 2.95E+02 2.97E+02 3.09E+02 2.81E+02
22 8.19E+01 2.07E+02 1.52E+02 1.08E+02 9.79E+01 9.81E+01 9.75E+01
23 4.83E+03 5.16E+03 4.44E+03 4.57E+03 3.74E+03 3.51E+03 3.58E+03
24 2.38E+02 2.66E+02 2.28E+02 2.02E+02 2.05E+02 2.05E+02 2.01E+02
25 2.84E+02 2.87E+02 2.85E+02 2.69E+02 2.82E+02 2.59E+02 2.80E+02
26 2.06E+02 2.01E+02 2.01E+02 2.15E+02 2.00E+02 2.02E+02 2.00E+02
27 9.85E+02 1.01E+03 9.62E+02 3.26E+02 4.60E+02 3.88E+02 4.11E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02

21

Table 16: Relative performance of SA-SHADE against state-of-the-art adaptive variants of DE at 30D. Reported
values are the averages of 51 independent runs for each function. Error values reaching within 10−8 of the global
optimum of the function are reported as 0.00+E00. The best result is highlighted in bold.

F SA-SHADE SHADE CoDE EPSDE JADE dynNP-jDE
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 8.15E+03 9.00E+03 9.78E+04 1.37E+06 7.67E+03 9.52E+04
F3 1.19E+05 4.02E+01 1.08E+06 1.75E+08 4.71E+05 1.71E+06
F4 3.10E-02 1.92E-04 8.18E-02 8.08E+03 6.09E+03 4.76E+01
F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 5.96E-01 4.16E+00 9.27E+00 2.07E+00 1.19E+01
F7 3.06E+00 4.60E+00 9.32E+00 5.88E+01 3.16E+00 2.62E+00
F8 2.07E+01 2.07E+01 2.08E+01 2.09E+01 2.09E+01 2.10E+01
F9 2.69E+01 2.75E+01 1.45E+01 3.50E+01 2.65E+01 2.20E+01
F10 6.13E-02 7.69E-02 2.71E-02 1.02E-01 4.04E-02 3.63E-02
F11 0.00E+00 0.00E+00 0.00E+00 1.95E-02 0.00E+00 0.00E+00
F12 1.82E+01 2.30E+01 3.98E+01 4.94E+01 2.29E+01 4.07E+01
F13 3.84E+01 5.03E+01 8.04E+01 7.68E+01 4.67E+01 7.10E+01
F14 6.34E-02 3.18E-02 3.60E+00 3.99E-01 2.86E-02 9.39E-03
F15 3.24E+03 3.22E+03 3.36E+03 6.75E+03 3.24E+03 4.39E+03
F16 1.01E+00 9.13E-01 3.38E-01 2.48E+00 1.84E+00 2.32E+00
F17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
F18 7.17E+01 7.25E+01 6.69E+01 1.37E+02 7.76E+01 1.35E+02
F19 1.33E+00 1.36E+00 1.61E+00 1.84E+00 1.44E+00 1.27E+00
F20 1.03E+01 1.05E+01 1.06E+01 1.30E+01 1.04E+01 1.13E+01
F21 2.81E+02 3.09E+02 3.02E+02 3.05E+02 3.04E+02 2.94E+02
F22 9.75E+01 9.81E+01 1.17E+02 3.09E+02 9.39E+01 1.03E+02
F23 3.58E+03 3.51E+03 3.56E+03 6.74E+03 3.36E+03 4.36E+03
F24 2.01E+02 2.05E+02 2.21E+02 2.91E+02 2.17E+02 2.04E+02
F25 2.80E+02 2.59E+02 2.57E+02 2.99E+02 2.74E+02 2.55E+02
F26 2.00E+02 2.02E+02 2.18E+02 3.56E+02 2.15E+02 2.00E+02
F27 4.11E+02 3.88E+02 6.20E+02 1.21E+03 6.70E+02 3.90E+02
F28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02

22

Table 17: Relative ranks and p values obtained by
SHADE against CoDE, EPSDE, JADE, and dynNP-jDE
at 30D. The best rank and outperformed algorithms at α

value = 0.05 are highlighted in bold.

Algorithm Rank-10D p value

SHADE 2.30 –

CoDE 2.91 0.15

JADE 2.50 0.64

dynNP-jDE 2.76 0.27

EPSDE 4.51 0.00

Table 18: Relative ranks and p values obtained by SA-
SHADE against SHADE, JADE, dynNP-jDE, CoDE, and
EPSDE at 30D.

Algorithm Rank p value

SA-SHADE 2.46 –

SHADE 2.92 0.35

JADE 3.14 0.15

dynNP-jDE 3.41 0.05
CoDE 3.60 0.02

EPSDE 5.44 0.00

While SA-SHADE (9 wins) is not statistically su-
perior to SHADE (5 wins), it does improve upon
SHADE on number of wins scored. The superior
performance of SA-SHADE can be attributed to the
strategy adaptation module as the underlying control
parameter adaptation mechanism remains the same
as SHADE. This also drives home the point that
strategy adaptation is indeed a useful mechanism and
should be used to improve the performance of DE
variants.

5.3 Parameter study of the reset rate pa-
rameter used in SA-SHADE

We performed a parameter analysis of the memory
reset rate R to determine the most useful interval
of clearing up the learned successful strategies in
the system. The results obtained using five differ-
ent reset rates are shown in Table 19 and the respec-
tive Friedman ranks obtained are listed in Table 20.
These results show that the reset rate does have a cru-
cial impact on the performance of SA-SHADE, and
lower reset rates (0.05,0.1) tend to be generally more
useful than the higher ones (0.2,0.3,0.4). This may
well be due to the bias created by the successful mu-
tation strategies when they are retained in memory
for longer times (higher reset rates).

Another interesting observation is that some of
the functions respond well to low reset rates and
some to higher ones, keeping in line with the no free
lunch theorem [66]. A detailed analysis may be per-
formed in the future to determine the generalized re-
set rate intervals depending upon the characteristics
of a function.

6 Conclusions

In this paper, we presented the plausibility of inte-
grating a strategy adaptation mechanism with a pa-

23

Table 19: Relative performance of SA-SHADE at different memory reset rates at 30D. Reported values are the av-
erages of 51 independent runs for each function. Error values reaching within 10−8 of the global optimum of the
function are reported as 0.00+E00. The best result is highlighted in bold.

F R=0.05 R=0.1 R=0.2 R=0.3 R=0.4
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 1.29E+04 8.15E+03 1.06E+04 1.16E+04 6.18E+05
3 5.37E+01 1.19E+05 1.11E+08 4.48E+07 9.65E+07
4 2.52E-03 3.10E-02 3.29E+02 3.40E-01 6.78E+00
5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6 8.80E-01 0.00E+00 5.43E-01 1.58E+00 8.80E-01
7 2.78E+00 3.06E+00 1.31E+01 9.38E+00 6.64E+00
8 2.08E+01 2.05E+01 2.07E+01 2.08E+01 2.08E+01
9 2.69E+01 2.69E+01 2.69E+01 2.72E+01 2.72E+01

10 5.81E-02 6.13E-02 7.49E-02 7.01E-02 7.69E-02
11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12 2.00E+01 1.82E+01 2.00E+01 2.10E+01 1.98E+01
13 5.40E+01 3.84E+01 4.16E+01 4.54E+01 4.49E+01
14 1.32E-02 6.34E-02 2.46E-02 2.68E-02 2.57E-01
15 3.24E+03 3.24E+03 3.26E+03 3.31E+03 3.35E+03
16 1.00E+00 1.01E+00 8.74E-01 1.00E+00 1.00E+00
17 3.04E+01 3.04E+01 3.04E+01 3.04E+01 3.04E+01
18 7.67E+01 7.17E+01 7.09E+01 7.14E+01 7.06E+01
19 1.45E+00 1.33E+00 1.44E+00 1.43E+00 1.42E+00
20 1.07E+01 1.03E+01 1.07E+01 1.06E+01 1.06E+01
21 2.88E+02 2.81E+02 2.83E+02 2.96E+02 2.80E+02
22 1.09E+02 9.75E+01 1.13E+02 1.02E+02 1.24E+02
23 3.72E+03 3.58E+03 3.67E+03 3.74E+03 3.84E+03
24 2.09E+02 2.01E+02 2.13E+02 2.16E+02 2.08E+02
25 2.83E+02 2.80E+02 2.86E+02 2.85E+02 2.85E+02
26 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02
27 8.57E+02 4.11E+02 6.95E+02 8.10E+02 7.64E+02
28 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02

24

Table 20: Average rankings of SA-SHADE at different
memory reset rates (Friedman)

Reset Rate Ranking
R=0.05 3
R=0.1 2.0536
R=0.2 3.0893
R=0.3 3.5179
R=0.4 3.4107

rameter adaptation mechanism. Given fixed con-
trol parameter settings, we first demonstrate, on a
test suite of 28 benchmark functions, that no sin-
gle mutation strategy performs significantly better
than all other mutation strategies. Then, we show
that similar results are observed in the presence of
control parameter adaption. This built the case of
automating the mutation strategies with or without
control parameter adaptation. We then incorpo-
rated a strategy adaptation mechanism into a well
known history based parameter adaptation mecha-
nism, SHADE. We compare the enhanced version
SA-SHADE with other well known adaptive mech-
anisms and show the competitive results obtained
by SA-SHADE. SA-SHADE performs significantly
better than well known adaptive variants, i.e., CoDE,
EPSDE, and dynNP-jDE and is highly competitive
compared to SHADE, and JADE. SHADE, though
being higher ranked, was not found to be statistically
significantly different when compared with CoDE
and dynNP-jDE. Thus, SA-SHADE improves upon
SHADE in this regard. The memory reset rate R of
SA-SHADE is found to have crucial impact on its
performance wherein lower reset rates are found to
be relatively more conducive than higher ones. An-
other important conclusion that can be drawn from
the results is that strategy adaptation is a useful
mechanism both in presence and absence of control
parameter adaptation, and we propose that it should
always be used while optimizing with DE.

Future work includes investigating the impact of
different adaptive strategies on multiple classes of
benchmark functions and classifying strengths and
weaknesses of each mechanism accordingly. Fur-
ther to that, the utility of a population size adapta-
tion mechanism into SA-SHADE is also proposed as
future work.

References

[1] A. E. Eiben, R. Hinterding, Z. Michalewicz, Pa-
rameter control in evolutionary algorithms, IEEE
Transactions on Evolutionary Computation, 3 (2)
(1999) 124-141.

[2] G. Beni, J. Wang, Swarm Intelligence in Cellular
Robotic Systems, in: Proceedings of the NATO
Advanced Workshop on Robots and Biological
Systems. Tuscany, Italy, 1989.

[3] P.J. Angeline, Adaptive and self-adaptive evo-
lutionary computation, in: M. Palaniswami, Y.
Attikiouzel, R.J. Marks, D.B. Fogel, T. Fukuda
(Eds.), Computational Intelligence: A Dynamic
System Perspective, IEEE Press, 1995, pp. 152-
161.

[4] J. Gomez, D. Dasgupta, F. Gonazalez, Using
adaptive operators in genetic search, in: Proceed-
ings of the Genetic and Evolutionary Computa-
tion Conference 2003 (GECCO03), Chicago, Illi-
nois, USA, 2003, pp. 1580-1581.

[5] B. R. Julstrom, What have you done for me
lately? Adapting operator probabilities in a
steady-state genetic algorithm, in: Proceedings of
the 6th International Conference on Genetic Al-
gorithms, Pittsburgh, PA, USA, 1995, pp. 81-87.

[6] J. E. Smith, T.C. Fogarty, Operator and param-
eter adaptation in genetic algorithms, Soft Com-
puting 1 (June) (1997) 8187.

25

[7] A. Tuson, P. Ross, Adapting operator settings in
genetic algorithms, Evolutionary Computation 6
(1998) 161184.

[8] R. M. Storn, K. V. Price, Differential evolu-
tion - A simple and efficient adaptive scheme for
global optimization over continuous spaces, In-
ternational Computer Science Institute, Berkeley,
CA, USA, ICSI Technical Report 95-012 (1995).

[9] S. Das, P. N. Suganthan, Differential evolution
- A survey of the state-of-the-art, IEEE Transac-
tions on Evolutionary Computation, 15 (1) (2011)
4-31.

[10] R. M. Storn, K. V. Price, Minimizing the real
functions of the ICEC 1996 contest by differential
evolution, in: Proceedings of IEEE International
Conference on Evolutionary Computation (1996)
842-844.

[11] J. Liu, J. Lampinen, On setting the control pa-
rameter of the differential evolution method, in:
Proceedings of 8th Int. Conference Soft Comput-
ing (MENDEL) (2002) 11-18.

[12] R. Gamperle, S. D. Muller, P. Koumout-
sakos, A parameter study for differential evolu-
tion, NNA-FSFS-EC 2002, Interlaken, Switzer-
land, WSEAS, (2002) 11-15.

[13] A. E. Eiben, J. E. Smith, Introduction to Evo-
lutionary Computing, Natural Computing. Berlin,
Germany: Springer-Verlag (2003).

[14] K. Price, R. Storn, J. Lampinen, Differential
Evolution - A Practical Approach to Global Op-
timization, Berlin, Germany: Springer (2005).

[15] S. Das, A. Konar, U. K. Chakraborty, Two im-
proved Differential Evolution schemes for faster
global search, in Proceedings of ACM-SIGEVO
GECCO (2005) 991-998.

[16] H. A. Abbass, The self-adaptive pareto differ-
ential evolution algorithm, in Proceedings of the
2002 IEEE Congress on Evolutionary Computa-
tion, Honolulu, Hawaii, USA, 1 (2002) 831-836.

[17] J. Brest, S. Greiner, B. Boskovic, M. Mernik,
V. Zumer, Self adapting control parameters in dif-
ferential evolution: A comparative study on nu-
merical benchmark problems, IEEE Transactions
on Evolutionary Computation, 10 (6) (2006) 646-
657.

[18] A. Zamuda, J. Brest, Self-adaptive control pa-
rameters randomization frequency and propaga-
tions in differential evolution. Swarm and Evolu-
tionary Computation, 25(1), (2015), 72-99.

[19] A. K. Qin, V. L. Huang, P. N. Suganthan, Dif-
ferential evolution algorithm with strategy adap-
tation for global numerical optimization, IEEE
Transactions on Evolutionary Computation 13
2009) 398-417.

[20] M. G. H. Omran, A. Salman, A. P. Engelbrecht,
Self-adaptive differential evolution, in: Compu-
tational Intelligence and Security, PT 1, Pro-
ceedings Lecture Notes in Artificial Intelligence
(2005) 192199.

[21] D. Zaharie, Control of population diversity and
adaptation in differential evolution algorithms, in:
Proceedings of the 9th International Conference
on Soft Computing, Brno, (2003) 4146.

[22] J. Tvrdik, Adaptation in differential evolution:
a numerical comparison, Applied Soft Computing
9 (June) (2009) 1149-1155.

[23] R. Mallipeddi, P. N. Suganthana, Q. K. Pan,
M. F. Tasgetiren, Differential evolution algorithm
with ensemble of parameters and mutation strate-
gies, Applied Soft Computing, 11 (2) (2011)
1679-1696.

26

[24] R. Storn, K. Price, Differential evolution A
simple and efficient heuristic for global optimiza-
tion over continuous spaces, Journal of Global
Optimization, 11 (1997) 341-359.

[25] J. Lampinen, I. Zelinka, On stagnation of the
differential evolution algorithm, in: Proceed-
ings of MENDEL 2000, 6th International Mendel
Conference on Soft Computing, (2000) 76-83.

[26] J. Ronkkonen, S. Kukkonen, K. V. Price, Real
parameter optimization with differential evolu-
tion, in Proceedings of IEEE Congress on Evo-
lutionary Computation, 1 (2005) 506-513.

[27] J. Liu, J. Lampinen, A Fuzzy Adaptive Differ-
ential Evolution Algorithm, in: Soft Computing,
A Fusion of Foundations, Methodologies and Ap-
plications, 9 (6) (2005) 448-462.

[28] F. Neri, V. Tirronen, Recent advances in differ-
ential evolution: a survey and experimental analy-
sis Artificial Intelligence Review, 33 (1-2) (2010)
61-106.

[29] J. Ronkkonen, J. Lampinen, On using normally
distributed mutation step length for the differen-
tial evolution algorithm, in: Proceedings of the
9th Int. Conf. on Soft Computuing MENDEL,
Brno, Czech Republic (2003) 11-18.

[30] A. K. Qin, P. N. Suganthan, Self-adaptive Dif-
ferential Evolution Algorithm for Numerical Op-
timization, in: Proceedings of the IEEE Congress
on Evolutionary Computation, (Sep) (2005).

[31] M. M. Ali, A. Trn, Population set based global
optimization algorithms: Some modifications and
numerical studies, Journal of Computers and Op-
erations Research, 31 (10) (2004) 1703-1725.

[32] U. K. Chakraborty, Advances in Differential
Evolution, in: Differential Evolution Research-
Trends and Open Questions, Springer, (2008) 11-
12.

[33] D. Dawar, S. A. Ludwig, Differential evolution
with dither and annealed scale factor, in: Pro-
ceedings of the IEEE Symposium Series on Com-
putational Intelligence, Orlando, Florida, U.S.A.,
(2014) 1-8.

[34] J. Teo, Exploring dynamic self-adaptive popu-
lations in differential evolution, Soft Computing -
A Fusion of Foundations, Methodologies and Ap-
plications, 10 (8) (2006) 673-686.

[35] J. Brest, M. S. Mauec, Population size reduc-
tion for the differential evolution algorithm, Ap-
plied Intelligence, 29 (3) (2008) 228-247.

[36] J. Zhang, A. C. Sanderson, JADE: Adap-
tive differential evolution with optional external
archive, IEEE Transaction on Evolutionary Com-
putation, 13 (5) (2009) 945958.

[37] E. Mezura-Montes, J. Velazquez-Reyes, C. A.
Coello Coello, A comparative study of differen-
tial evolution variants for global optimization, in
GECCO (2006) 485-492.

[38] F. Peng, K. Tang, G. Chen, X. Yao, Multi-
start JADE with knowledge transfer for numerical
optimization, in: Proceedings of the IEEE CEC
(2009) 1889-1895.

[39] Z. Yang, J. Zhang, K. Tang, X. Yao, A. C.
Sanderson, An adaptive coevolutionary differen-
tial evolution algorithm for large-scale optimiza-
tion, in: Proceedings of the IEEE CEC (2009)
102-109.

27

[40] W. Gong, Z. Cai, C. X. Ling, H. Li, En-
hanced differential evolution with adaptive strate-
gies for numerical optimization, IEEE Transac-
tions on Systems, Man, and Cybernetics, PartB,
41 (2) (2011) 397-413.

[41] J. Zhang, V. Avasarala, A. C. Sanderson, T.
Mullen, Differential evolution for discrete opti-
mization: An experimental study on combina-
torial auction problems, in: Proceedings of the
IEEE CEC (2008) 2794-2800.

[42] J. Zhang, A. C. Sanderson, Self-adaptive multi-
objective differential evolution with direction in-
formation provided by archived inferior solutions,
in: Proceedings of the IEEE CEC (2008) 2801-
2810.

[43] R. Tanabe, A. Fukunaga, Success-History
Based Parameter Adaptation for Differential Evo-
lution, in: Proceedings of the IEEE CEC (2013)
71-78.

[44] R. Tanabe, A. Fukunaga, Evaluating the perfor-
mance of SHADE on CEC 2013 benchmark prob-
lems, in: Proceedings of the IEEE CEC (2013)
1952-1959.

[45] A. Auger, N. Hansen, A Restart CMA Evolu-
tion Strategy With Increasing Population Size, in:
Proceedings of the IEEE CEC (2005) 1769-1776.

[46] C. Garca-Martnez, M. Lozano, F. Herrera, D.
Molina, A. M. Sanchez, Global and local real-
coded genetic algorithms based on parent-centric
crossover operators, European Journal of Opera-
tions Research, 185 (3) (2008) 1088-1113.

[47] M. A. M. de Oca, T. St utzle, K. V. den Enden,
M. Dorigo, Incremental Social Learning in Parti-
cle Swarms, IEEE Transactions on Systems, Man,
and Cybernetics, PartB, 41 (2) (2011) 368-384.

[48] J. L. J. Laredo, C. Fernandes, J. J. M. Guervos,
C. Gagne, Improving Genetic Algorithms Perfor-
mance via Deterministic Population Shrinkage,
in: Proceedings of the GECCO (2009) 819-826.

[49] R. Tanabe, A. Fukunaga, Improving the Search
Performance of SHADE Using Linear Population
Size Reduction, in: Proceedings of the IEEE CEC
(2014) 1658-1665.

[50] J. Brest, A. Zamuda, B. Boskovic, M.
S. Maucec, V. Zumer, Highdimensional real-
parameter optimization using self-adaptive differ-
ential evolution algorithm with population size re-
duction, in: Proceedings of the IEEE Congress on
Evolutionary Computation (2008) 2032-2039.

[51] A. Zamuda, J. Brest. Population Reduction Dif-
ferential Evolution with Multiple Mutation Strate-
gies in Real World Industry Challenges. Artificial
Intelligence and Soft Computing – ICAISC 2012,
7269 (2012), 154-161.

[52] J. J. Liang, B.Y. Qu, P. N. Suganthan, A. G.
Hernandez-Daz, Problem definitions and evalu-
ation criteria for the CEC 2013 special session
on real-parameter optimization, Computational
Intelligence Laboratory, Zhengzhou University,
Zhengzhou, China and Nanyang (2013).

[53] A. K. Qin, Xiaodong Li, Differential Evolution
on the CEC-2013 Single-Objective Continuous
Optimization Testbed, IEEE Congress on Evolu-
tionary Computation, Cancun, Mexico, June 20-
23, 2013.

[54] M. Friedman, The use of ranks to avoid the as-
sumption of normality implicit in the analysis of
variance, Journal of the American Statistical As-
sociation 32 (1937) 674-701.

28

[55] D. J. Sheskin, Handbook of Parametric and
Nonparametric Statistical Procedures, 4th ed.,
Chapman and Hall/CRC, 2006.

[56] J. H. Zar, Biostatistical Analysis, Prentice Hall,
2009.

[57] Y. Hochberg, A sharper Bonferroni procedure
for multiple tests of significance, Biometrika
(1988) 800-803.

[58] J. Derrac, S. Garca, D. Molina, F. Herrera,
A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,
Swarm and Evolutionary Computation, vol 1, pp
3-18, 2011.

[59] B. V. Babu, S. A. Munawar, Optimal design of
shell-and-tube heat exchangers bu different strate-
gies of Differential Evolution, Technical Report
PILANI -333 031, Department of chemical engi-
neering, BITS, Rajasthan, India (2001).

[60] J. Vesterstrom, R. A. Thomson, Comparative
study of differential evolution, particle swarm op-
timization, and evolutionary algorithms on nu-
merical benchmark problems, in: Proceedings of
the IEEE Congress on Evolutionary Computation
(2004) 1980-1987.

[61] X. F. Xie, W. J. Zhang. SWAF: Swarm algo-
rithm framework for numerical optimization, in:

Proceedings of the Genetic Evolutionary Compu-
tation Conference, Part I (2004) 238-250.

[62] A. Zamuda, J. Brest, B. Bokovic, V. umer.
Large scale global optimization using differen-
tial evolution with self-adaptation and coopera-
tive co-evolution, in: Proceedings of the 2008
IEEE World Congress on Computational Intelli-
gence (2008) 3719-3726.

[63] Z. Yang, K. Tang, X. Yao. Self-adaptive dif-
ferential evolution with neighborhood search. In
Proceedings of the IEEE Congress on Evolution-
ary Computation (2008) 1110-1116.

[64] A. Iorio, X. Li, Solving rotated multi-objective
optimization problems using differential evolu-
tion, in: Australian Conference on Artificial In-
telligence, Cairns, Australia (2004) 861-872.

[65] S. Das, A. Abraham, U.K. Chakraborthy, Dif-
ferential evolution using a neighborhood-based
mutation operator, IEEE Transactions on Evolu-
tionary Computation 13 (June) (2009) 526-553.

[66] D. H. Wolpert, W. G. Macready, No Free Lunch
Theorems for Optimization, IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp.

67-82, 1997.

29

