
Service-Oriented Matchmaking and Brokerage

Tom Goodale1, Simone A. Ludwig1, William Naylor2, Julian Padget2 and Omer F. Rana1
1School of Computer Science/Welsh eScience Centre, Cardiff University

2Department of Computer Science, University of Bath

Abstract

The GENSS project has developed a flexible generic brokerage framework based on the use of plug-in components that are
themselves web services. The focus in GENSS has been on mathematical web services, but the broker itself is domain inde-
pendent and it is the plug-ins that act as sources of domain-specific knowledge. A range of plug-ins has been developed that
offer a variety of matching technologies including ontological reasoning, mathematical reasoning, reputation modelling,
and textual analysis. The ranking mechanism too is a plug-in, thus we have a completely re-targettable matchmaking and
brokerage shell plus a selection of useful packaged behaviours.

1 Introduction

How does the e-scientist or the e-scientist’s software agent
find the web service that does what they want? In practice,
the reality for the e-scientist may be more the result of social
interaction than scientific evaluation. While collegial rec-
ommendation, as an approach, has a number of positive at-
tributes, it also underlines the weaknesses of current service
description languages and service discovery mechanisms if
a user prefers to use other means to find the “right” web ser-
vice. To facilitate the re-use of generic components and their
combination with domain specific components, a new low-
overhead approach to building matchmakers and brokers is
required—and one that gains leverage from the currency of
the grid: web services while also bringing the process and
the control closer to the user. Significant work has already
been undertaken to support information services, such as
the Globus MDS, LDAP and recently registry services such
as UDDI. Most of these systems however are based on an
“asymmetric” relationship between a client and a provider
– generally requiring the client to make query to a service
provider, and the provider enforcing some policy after a suit-
able service has been discovered. Each of these systems are
also restricted by the types of queries that they can support.

In this paper we describe an architecture that simplifies
the deployment of bespoke matchmakers and brokers. The
matchmaker is comprised of re-usable components, the use
of which is demonstrate through a set of examples. Whether
a user wants the function of a matchmaker—to find suitable
candidate services—or of a broker—to select from the can-
didate services and invoke or even construct a workflow—
depends on just how much the user wishes to trust in the
intelligence of matching and ranking mechanisms. This is
somewhat similar to hitting the “I’m feeling lucky” button
in Google, except here the user is committing to the use of a
grid resource and that may have cost implications.

The flexibility of the brokerage framework stems from
the fact that its architecture involves a component based ap-
proach, which allows the integration of capabilities through
the use of web services. Thus, constructing a new bro-
ker becomes a matter of composing a workflow involving:
(i) a range of sources of service descriptions; (ii) a range of
matching services that will accept a service request and a
service description and output some information about the
relationship between the two; (iii) a ranking service that can
order the service matching results information to determine
the best fit; (iv) a service to invoke the selected service and
deliver the results. For the user that would prefer greater
control, instead of a ranking service, there could be a pre-
sentation service that contacts the user to display a list of
options from which they may select. Whichever option is
taken, the broker components employed, and other decision-
making data may be recorded as provenance data in the an-
swer document. It is also crucial to be able to provide feed-
back about why a particular service did or did not match—a
form of explanation—since it is not just a matter of the pres-
ence or absence of a keyword as it is for Google finding and
ranking a page. In the same way that humans choose care-
fully and subsequently refine their inputs to Google, we may
expect users to want to do the same in identifying web ser-
vices.

But how can a user express what they want of a web ser-
vice? Keywords might help narrow down the search but
they do not offer a language for describing the compati-
bility requirements, such as what inputs and what outputs
are wanted. Furthermore a statement of the signature of a
service says next to nothing about the actual function; for
that we require the statement of relationships between the
inputs and outputs, or more generally, statements of pre-
and post-conditions. The reasonable conclusion is that we
need a combination of syntactic, semantic and even social
mechanisms to help identify and choose the right services.



We can therefore observe that each service will have a func-
tional interface (describing the input/outputs needed to in-
teract with it and their types) and a non-functional interface
(which identifies annotations related to the service made by
other users and performance data associated with the ser-
vice). Being able to support selection on both of these two
interfaces provides a useful basis to distinguish between ser-
vices.

Even when a service (or a composition of a set of services)
has been selected, it is quite likely that their interfaces are
not entirely compatible. Hence, one service may have more
parameters than another, making it difficult to undertake an
exact comparison based just on their interfaces. Similarly,
data types used within the interface of one service may not
fully match those of another. In such instances, it would be
necessary to identify mapping between data types to deter-
mine a “degree” of match between the services. Although
the selection or even the on-the-fly construction of shim ser-
vices is something that could be addressed from the match-
making perspective [6, 10], we do not discuss this issue fur-
ther in this paper.

The remainder of the paper is laid as follows: (i) in the
next-but-one section (3) we describe the architecture in de-
tail and the design decisions that lead to it (ii) this is followed
by a description of the range of plug-ins that have been de-
veloped during the MONET and GENSS projects and that
are now being integrated through the KNOOGLE project
(iii) the paper concludes with a survey of related work and a
brief outline of developments foreseen over the next year.

2 eScience Relevance

The GENSS project has developed a flexible generic bro-
kerage framework based on the use of plug-in components
that are themselves web services. The focus in GENSS
has been on mathematical web services, but the broker it-
self is domain independent and it is the plug-ins that act
as sources of domain-specific knowledge. Thus, bespoke
matchers/brokers can be created at will by clients, as we
demonstrate later in conjunction with the Triana workflow
system. Each broker takes into consideration the particu-
lar data model available within a domain, and undertakes
matching between service requests and advertisements in
relation to the data model. The complexity of such a
data model can also vary, thereby constraining the types of
matches that can be supported within a particular applica-
tion. Within GENSS and its predecessor project MONET,
a range of plug-ins were developed that offer a variety of
matching technologies:

1. Ontological reasoning: input/output constraints are
translated to description logic and a DL reasoner is used
to identify query to service matches,

2. Mathematical reasoning: analyses the functional re-
lationship expressed in the pre-conditions and effects

of the service (can also be applied to service composi-
tion),

3. Reputation modelling: recommendations from the
user’s social network are aggregated to rank service
recommendations,

4. Textual analysis: natural language descriptions of re-
quests and services are analysed for related semantic
information.

The purpose of the framework is to make brokerage tech-
nology readily deployable by the non-specialist, and more
importantly, an effective but unobtrusive component for e-
Science users. Specifically this indicates the following
modes of use:

1. As a pre-deployed broker in a work-flow demonstrating
pre-packaged functionality and utility

2. As a bespoke broker using pre-defined plug-ins demon-
strating the construction of a new broker from existing
services

3. The authoring and/or packaging of plug-in services
other than those described above, demonstrating the
flexibility and interoperability of the architecture

4. The exploration of meta-brokerage, where the web
service description of broker components are pub-
lished and selected by a meta-broker to instantiate new
special-purpose brokers.

3 Service-oriented Matchmaking

3.1 Matchmaking Requirements

We begin by reiterating the basic requirements for match-
making:

1. Sufficient input information about the task is needed to
satisfy the capability, while the outputs of the matched
service should contain at least as much information as
the task is seeking, and

2. The task pre-conditions should at least satisfy the capa-
bility pre-conditions, while the post-conditions of the
capability should at least satisfy the post-conditions of
the task.

These constraints reflect work in component-based software
engineering and are, in fact, derived from [23]. They are also
more restrictive than is necessary for our setting, by which
we mean that some inputs required by a capability can read-
ily be inferred from the task, such as the lower limit on a nu-
merical integration where by convention this is zero, or the
dependent variable in a symbolic integration of a uni-variate
function. Conversely, a numerical integration routine might
only work from 0 to the upper limit, while the lower limit
of the problem is non-zero. A capability that matches the
task can be synthesised from the composition of two invoca-
tions of the capability with the fixed lower limit of0. Clearly
the nature of the second solution is quite different from the



Ontology
server (OWL)

@ Cardiff

· · ·

Web Services (Matching algorithms)
@ Cardiff

Portal
Broker
(Java)

+
Rule-based
Reasoner

UDDI registry
@ Cardiff

Matching algorithms

MSQL database
@ Cardiff

Mathematical service
descriptions

Authorization
Server

Ontology
server (OWL)

@ Bath

· · ·

Numeric and Symbolic Services
@ Bath

TCP

Java
Beans

H
T

T
P

/
S
O

A
P

H
T

T
P

/
S
O

A
P HTTP/SOAP

HTTP/S
OAP

Figure 1: Architecture

first, but both serve to illustrate the complexity of this do-
main. It is precisely this richness too that dictates the nature
of the matchmaking architecture, because as these two sim-
ple examples show, very different reasoning capabilities are
required to resolve the first and the second. Furthermore, we
believe that given the nature of the problem, it is only very
rarely that a task description will match exactly a capability
description and so a range of reasoning mechanisms must be
applied to identify candidate matches. This results in:

Requirement 1: A plug-in architecture support-
ing the incorporation of an arbitrary number of
matchers.

The second problem is a consequence of the above: there
will potentially be several candidate matches and some
means of indicating their suitability is desirable, rather than
picking the first or choosing randomly. Thus:

Requirement 2: A ranking mechanism is re-
quired that takes into account pure technical (as
discussed above in terms of signatures and pre-
and post-condition) and quantitative and qualita-
tive aspects—and even user preferences.

3.2 Matchmaking Architecture

Our matchmaking architecture is shown in Figure 1 and
comprises the following:

1. The Authorization service, Portal: these constitute the
client interface and are employed by users to specify
their service request.

2. The Broker and Reasoner: these constitute the core
of the architecture, communicating with the clientvia
TCP and with the other componentsvia SOAP.

3. The matchmaker: this is in part made up of a reasoning
engine and in part by the matching algorithms, which
define the logic of the matching process.

4. Mathematical ontologies: databases of OWL based on-
tologies, derived from OpenMath Content Dictionaries
(CDs), GAMS (Guide to Available Mathematical Soft-
ware)etc.developed during the MONET [15] project.

5. A Registry Service: which enables the storage of math-
ematical service descriptions, together with the corre-
sponding endpoint for the service invocation.

6. Mathematical Web Services: available on third party
sites, accessible over the Web.

There are essentially two use cases:

Use Case 1:Matchmaking with client selection:which
proceeds as follows:

1. The user contacts the matchmaker.
2. The matchmaker loads the matching algorithms speci-

fied by the user via a look-up in the UDDI registry. In
the case of an ontological match a further step is nec-
essary. This is, the matchmaker contacts the reasoner
which in turn loads the corresponding ontology.

3. Having additional match values results in the registry
being queried, to see whether it contains services which
match the request.

4. Service details are returned to the user via the match-
maker.

The parameters stored in the registry (a database) are ser-
vice name, URL, taxonomy, input and output signatures,



pre- and post-conditions. Using contact details of the ser-
vice from the registry, the user can then call the Web Service
and interact with it.
Use Case 2:Brokerage:where the client delegates service
selection via a policy statement. This proceeds essentially as
above except that the candidate set of services is then anal-
ysed according to the client-specified policy and one service
is selected and invoked.

Details of the various components of the architecture are
discussed in [13].

4 Workflow integration

Workflow-based tools are being actively used in the e-
Science community, generally as a means to combine com-
ponents that are co-located with the workflow tool. Re-
cently, extensions to these tools which provide the ability to
combine services which are geographically distributed have
also been provided. To demonstrate the use of the match-
maker as a service, we have integrated our Broker with the
Triana workflow engine.

4.1 Triana

Triana was initially developed by scientists in GEO 600 [7]
to help in the flexible analysis of data sets, and therefore
contains many of the core data analysis tools needed for one-
dimensional data analysis, along with many other toolboxes
that contain units for areas such as image processing and text
processing. All in all, there are around 500 units within Tri-
ana covering a broad range of applications. Further, Triana is
able to choreograph distributed resources, such as web ser-
vices, to extend its range of functionality. Additional web
service-based algorithms have also been added recently to
Triana to support data mining [17]. Triana may be used
by applications and end-users alike in a number of differ-
ent ways [21]. For example, it can be used as a: graphical
workflow composition system for Grid applications; a data
analysis environment for image, signal or text processing;
as an application designer tool, creating stand-alone applica-
tions from a composition of components/units; and through
the use of its pluggable workflow representation architec-
ture, allowing third party tool and workflow representation
such as WSDL and BPEL4WS.

The Triana user interface consists of a collection of tool-
boxes containing the current set of Triana components and
a work surface where users graphically choreograph the re-
quired behaviour. The modules are late bound to the services
that they represent to create a highly dynamic programming
environment. Triana has many of the key programming con-
structs such as looping (do, while, repeat until etc.) and
logic (if, then etc.) units that can be used to graphically con-
trol the dataflow, just as a programmer would control the
flow within a conventional program using specific instruc-

tions. Programming units (i.e. tools) include information
about which data-type objects they can receive and which
ones they output, and Triana uses this information to per-
form design-time type checking on requested connections to
ensure data compatibility between components; this serves
the same purpose as the compilation of a program for com-
patibility of function calls.

Triana has a modularized architecture that consists of a
cooperating collection of interacting components. Briefly,
the thin-client Triana GUI connects to a Triana engine (Tri-
ana Controlling Service, TCS) either locally or via the net-
work. Under a typical usage scenario, clients may log into
a TCS, remotely compose and run a Triana application and
then visualize the result locally – even though the visualiza-
tion unit itself is run remotely. Alternatively, clients may log
off during an application run and periodically log back on
to check the status of the application. In this mode, the Tri-
ana TCS and GUI act as a portal for running an application,
whether distributed or in single execution mode.

4.2 Triana Brokering

To support matchmaking for numerical services in Triana,
the broker has been included within Triana in two ways:

1. A service in the toolbox: as illustrated in figure 2, the
broker is included as a “search” service within the Tri-
ana toolbox. In order to make use of the service, it is
necessary for a user to instantiate the service within a
workflow, including a “WSTypeGen” component be-
fore the service, and a “WSTypeViewer” after the ser-
vice. These WSType components allow conversion of
data types into a form that can be used by a web service.
Double clicking on the WSTypeGen component gener-
ates the user interface also shown in figure 2, requiring
a user to chose a match mode (a “structural” mode is se-
lected in the figure), specify pre- and post-conditions,
and the query using OpenMath syntax. Once this form
has been completed, hitting the “OK” button causes
the search service to be invoked, returning a URL to
the location of a service that implements the match.
If multiple matches are found, the user receives a list
of services and must manually select between them (as
shown in figure 3). If only a single service is found, the
location of a WSDL file may be returned, which can
then be used by a subsequent service in the workflow
(if the matchmaker is being used as a broker).

2. A menu item: in this case, the search service is invoked
from a menu item, requiring the user to complete a
form, as shown in figure 3. The user specifies the query
using the form also shown in the figure, and selects a
matching mode (a “Structural match” is selected in the
figure). The result is displayed in a separate window
for the user to evaluate. In this instance, it is not nec-
essary to match any data types before and after a match
service, and some additional components will need to



36CoRE, Rutgers University, Feb 06

Figure 2: A Triana workflow with matchmaker

37CoRE, Rutgers University, Feb 06

Figure 3: Results from the matchmaker in Triana



be implemented by the user to achieve this. This mode
of use is particularly useful if a user does not intend
to use the matchmaker within a workflow, but prefers
to investigate services of interest, before a workflow is
constructed graphically.

Using the matchmaker as a search service allows it to be
used as a standard component in Triana. In this case, a user
constructs a workflow with a search service being a compo-
nent in this workflow. During enactment, the search service
invokes the matchmaker and returns one or more results.
Where a single result is returned (i.e. where the matchmaker
is being used as a broker), the workflow continues to the next
service in graph without any requirement for user input. As
Triana already allows for dynamic binding of components to
service instances, the search service essentially provides an
alternative form of dynamic binding.

5 Complexity issues

An important issue for brokerage systems is whether the
system scales well with respect to the number of services
registered with the system. That is, the number of services
should only have a small factor in any expression calculating
the complexity of the system. For the brokerage system de-
scribed in this paper, the complexity costs will be dependant
on the complexity costs of the matchmaker plugins to the
service. Generally the more powerful the plugin, the higher
the complexity cost. One class of matchmaker plugins, that
we utilise is ontology based plugins, these generally involve
some traversal of an ontology and as such, the costs will be
dependant more on the height than the absolute size of the
ontology. Some figures indicating the actual performance of
our system appear in Appendix A

6 Planned Future Work

A particular system which manages allocation of jobs to a
pool of processors, is the GridSAM system [8]. The Grid-
SAM system takes job descriptions given in JSDL [2] and
the executables from Clients. It then distributes the jobs over
the processors which perform the processing, GridSAM then
returns the results to the Clients. It also provides certain
monitoring services. Grimoires [9] is a registry service for
services, which allows attachments of semantic descriptions
to the services. Grimoires is UDDIv2 [1] compliant and
stores the semantic attachments as RDF triples, this gives
scope for attachments with arbitrary schema including those
for describing mathematical services. A restriction that has
been identified with the current GridSAM architecture, is
that it doesn’t incorporate any brokerage capabilities. Fur-
thermore it appears that the Grimoires registry does not pro-
vide the resource allocation provided by GridSAM. A future
project will look at integration of these two approaches in

such a manner that it can be used in coordination with the
architecture described in this paper.

7 Related Work

Matchmaking has quite a significant body of associated lit-
erature, so we do not attempt to be exhaustive, but survey
just those systems that have been influential or we believe
are especially relevant to the issues raised here, namely ar-
chitecture, flexibility and matching technologies.

Although generalizations are risky, broad categorizations
of matchmaking and brokerage research seem possible using
criteria such as domain, reasoning mechanisms and adapt-
ability.

Much of the published literature has described generic
brokerage mechanisms using syntactic or semantic, or a
combination of both, techniques. Some of the earliest sys-
tems, enabled by the development of KIF (Knowledge In-
terchange Format) [5] and KQML (Knowledge Query and
Manipulation Language) [20], are SHADE [11] operating
over logic-based and structured text languages and the com-
plementary COINS [11] that operates over free text using
well-known term-first index-first information retrieval tech-
niques. Subsequent developments such as InfoSleuth [14]
applied reasoning technology to the advertised syntax and
semantics of a service description, while the RETSINA sys-
tem [19] had its own specialized language [18] influenced
by DAML-S (the pre-cursor to OWL-S) and used a belief-
weighted associative network representation of the relation-
ships between ontological concepts as a central element of
the matching process. While technically sophisticated, a
particular problem with the latter was how to make the initial
assignment of weights without biasing the system inappro-
priately. A distinguishing feature of all these systems is their
monolithic architecture, in sharp contrast to GRAPPA [22]
(Generic Request Architecture for Passive Provider Agents)
which allows for the use of multiple matchmaking mecha-
nisms. Otherwise GRAPPA essentially employs fairly con-
ventional multi-attribute clustering technology to reduce at-
tribute vectors to a single value. Finally, a notable contri-
bution is the MathBroker architecture, that like the domain-
specific plug-ins of our brokerage scheme, works with se-
mantic descriptions of mathematical services using the same
MSDL language. However, current publications [3] seem to
indicate that matching is limited to processing taxonomies
and the functional issues raised by pre- and post-conditions
are not considered. The MONET broker [4], in conjunction
with the RACER reasoner and the Instance Store demon-
strated one of the earliest uses of a description logic reasoner
to identify services based on taxonomic descriptions coming
closest to the objective of the plug-ins developed for GENSS
in attempting to provide functional matching of task and ca-
pability.

In contrast, matching and brokerage in the grid computing



domain has been relatively unsophisticated, primarily using
syntactic techniques, such as in the ClassAds system [16]
used in the Condor system and RedLine [12] which extends
ClassAds, where match criteria may be expressed as ranges
and hence are a simple constraint language. In the Condor
system, the use of ClassAds is to enable computational jobs
find suitable resources, generally using dynamic attributes
such as available physical and virtual memory, CPU type
and speed, current load average, and other static attributes
such as operating system type, job manager etc. A resource
also has a simple policy associated with it, which identifies
when it is willing to accept new job requests. The approach
is therefore particular focused to work for managing job ex-
ecution on a Condor pool, and configured for such a system
only. It would be difficult to deploy this approach (without
significant changes) within another job execution system, or
one that makes use of a different resource model. The Red-
Line system allows matching of job requests with resource
capabilities based on constraints – in particular the ability to
also search based on resource policy (i.e. when a resource is
able to accept new jobs, in addition to job and resource at-
tributes). The RedLine description language provides func-
tions such asForany andForall to be able to find multiple
items that match. The RedLine system is however still con-
strained by the type of match mechanisms that it supports—
provided through its description language. Similar to Con-
dor, it is also very difficult to modify it for a different re-
source model. Our approach is more general, and can allow
plug-ins to be provided for both RedLine and Condor as part
of the matchmaker configuration. In our model, therefore, as
the resource model is late-bound, we can specify a specialist
resource model and allow multiple such models to co-exist,
each implemented in a different configuration of the match-
maker.

8 Conclusion

We have outlined the development of a brokerage archi-
tecture whose initial requirements were derived from the
MONET broker, namely the discovery of mathematical ser-
vices, but with the addition of the need to establish a func-
tional relationship between the pre- and post-conditions of
the task and the capability. As a consequence of the en-
gineering approach taken in building the GENSS match-
maker/broker, the outcome has been a generic matchmak-
ing shell, that may be populated by a mixture of generic
and domain-specific plug-ins. These plug-ins may also be
composed and deployed with low overhead, especially with
the help of workflow tools, to create bespoke matchmak-
ers/brokers. The plug-ins may be implemented as web ser-
vices and a mechanism has been provided to integrate them
into the architecture. Likewise, the use of web services for
the plug-ins imposes a low overhead on the production of
new components which may thus encourage wider author-

ship of new, shareable, generic and specific matching ele-
ments (as reported in the Appendix). This would also pro-
vide the basis for defining a policy about how results from
multiple matching techniques may be combined.

9 Acknowledgements

The work reported here is partially supported by the Engi-
neering and Physical Sciences Research Council under the
Semantic Grids call of the e-Science program (GENSS grant
reference GR/S44723/01) and partially supported through
the Open Middleware Infrastructure Institute managed pro-
gram (project KNOOGLE).

References

[1] A.E. Walsh. UDDI, SOAP, and WSDL: The Web
Services Specification Reference Book, 2002. UD-
DIORG.

[2] Stephen McGough Ali Anjomshoaa, Darren Pulsipher.
Job Submission Description Language WG (JSDL-
WG), 2003. Available fromhttps://forge.
gridforum.org/projects/jsdl-wg/ .

[3] Rebhi Baraka, Olga Caprotti, and Wolfgang Schreiner.
A Web Registry for Publishing and Discovering Math-
ematical Services. InEEE, pages 190–193. IEEE Com-
puter Society, 2005.

[4] Olga Caprotti, Mike Dewar, and Daniele Turi. Mathe-
matical Service Matching Using Description Logic and
OWL. In Andrea Asperti, Grzegorz Bancerek, and An-
drzej Trybulec, editors,MKM, volume 3119 ofLecture
Notes in Computer Science, pages 73–87. Springer,
2004.

[5] M. Genesereth and R. Fikes. Knowledge In-
terchange Format, Version 3.0 Reference Man-
ual. Technical report, Computer Science De-
partment, Stanford University, 1992. Avail-
able from http://www-ksl.stanford.edu/
knowledge-sharing/papers/kif.ps .

[6] C. Goble. Putting Semantics into e-Science and Grids.
Proc E-Science 2005, 1st IEEE Intl Conf on e-Science
and Grid Technologies, Melbourne, Australia, 5-8 De-
cember, 2005.

[7] EO 600 Gravitational Wave Project.http://www.
geo600.uni-hannover.de/ .

[8] GridSAM - Grid Job Submission and Mon-
itoring Web Service, 2006. Available from
http://gridsam.sourceforge.net/2.
0.0-SNAPSHOT/index.html .



[9] (Grimoires: Grid RegIstry with Metadata Ori-
ented Interface: Robustness, Efficiency, Secu-
rity , 2004. Available from http://twiki.
grimoires.org/bin/view/Grimoires/ .

[10] Duncan Hull, Robert Stevens, Phillip Lord, Chris
Wroe, and Carole Goble. Treating ”shimantic web”
syndrome with ontologies. In John Domingue,
editor, First Advanced Knowledge Technologies
workshop on Semantic Web Services (AKT-SWS04),
volume 122. KMi, The Open University, Milton
Keynes, UK, 2004. Workshop proceedings avail-
able from CEUR-WS.org. ISSN:1613-0073.http:
//sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-122/ .

[11] D. Kuokka and L. Harada. Integrating information
via matchmaking.Intelligent Information Systems 6(2-
3), pp. 261-279, 1996.

[12] Chuang Liu and Ian T. Foster. A Constraint Language
Approach to Matchmaking. InRIDE, pages 7–14.
IEEE Computer Society, 2004.

[13] Simone Ludwig, Omer Rana, William Naylor, and
Julian Padget. Matchmaking Framework for Mathe-
matical Web Services.Journal of Grid Computing,
4(1):33–48, March 2006. Available viahttp://dx.
doi.org/10.1007/s10723-005-9019-z .
ISSN: 1570-7873 (Paper) 1572-9814 (Online).

[14] W. Bohrer M. Nodine and A.H. Ngu. Semantic broker-
ing over dynamic heterogenous data sources in InfoS-
leuth. InProceedings of the 15th International Confer-
ence on Data Engineering, pp. 358-365, 1999.

[15] Mathematics on the Net - MONET. http://
monet.nag.co.uk .

[16] Rajesh Raman, Miron Livny, and Marvin H. Solomon.
Matchmaking: Distributed Resource Management for
High Throughput Computing. InHPDC, pages 140–,
1998.

[17] O. F. Rana, Ali Shaikh Ali, and Ian J. Taylor. Web
Services Composition for Distributed Data Mining. In
D. Katz, editor,Proc. of ICPP, Workshop on Web and
Grid Services for Scientific Data Analysis, Oslo, Nor-
way June 14, 2005.

[18] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dy-
namic matchmaking among heterogeneous software
agents in cyberspace.Journal of Autonomous Agents
and Multi Agent Systems, 5(2):173–203, June 2002.

[19] Katia P. Sycara, Massimo Paolucci, Martin Van Velsen,
and Joseph A. Giampapa. The RETSINA MAS Infras-
tructure.Autonomous Agents and Multi-Agent Systems,
7(1-2):29–48, 2003.

[20] D. McKay T. Finin, R. Fritzson and R. McEntire.
KQML as an agent communication language. InPro-
ceedings of 3rd International Conference on Informa-
tion and Knowledge Management, pp. 456-463, 1994.

[21] Ian Taylor, Matthew Shields, Ian Wang, and Roger
Philp. Grid Enabling Applications using Triana.Work-
shop on Grid Applications and Programming Tools.
In conjunction with GGF8. Organized by: GGF Ap-
plications and Testbeds Research Group (APPS-RG)
and GGF User Program Development Tools Research
Group (UPDT-RG), 2003.

[22] D. Veit. Matchmaking in Electronic Markets, volume
2882 ofLNCS. Springer, 2003. Hot Topics.

[23] Amy Moormann Zaremski and Jeannette M. Wing.
Specification Matching of Software Components.
ACM Transactions on Software Engineering and
Methodology, 6(4):333–369, October 1997.

A GENSS performance indicators

Performance indicators for the GENSS matchmaker are re-
ported here. An “end-to-end” test, with a user in Bath and
a registry in Cardiff, produced a wall-clock time of 8 sec-
onds. A “soak” test to repeatedly run the same search
(client/matching process – as a Web Service – on a machine
in Bath with registry in Cardiff) produced the following re-
sults:

Structural matcher
Iterations real user sys

1 0m14.495s 0m4.362s 0m0.172s
10 1m2.898s 0m5.766s 0m0.318s

100 9m59.015s 0m12.173s 0m1.566s
Indicating that amortized elapsed time/query is around

6 seconds using the structural matcher.
Ontological matcher

Iterations real user sys

1 0m22.089s 0m4.786s 0m0.173s
10 1m49.031s 0m5.882s 0m0.299s

100 17m13.894s 0m12.682s 0m1.203s
Indicating that amortized elapsed time/query is just over

10 seconds using the ontological matcher. Performing the
same test as above, but where a command line Java appli-
cation was used to search the service registry, linux sys-
tem monitoring tools report that on the machine carrying out
the search process that program used approximately 25.4MB
and 36.06% CPU.


	Abstract
	1. Introduction
	2. eScience Relevance
	3. Service-oriented Matchmaking
	3.1 Matchmaking Requirements
	3.2 Matchmaking Architecture

	4. Workflow integration
	4.1 Triana
	4.2 Triana Brokering

	5. Complexity issues
	6. Planned Future Work
	7. Related Work
	8. Conclusion
	9. Acknowledgements
	References

