
Matchmaking Support for Mathematical Web Services

Simone A. Ludwig1, William Naylor2, Julian Padget2 and Omer F. Rana1
1School of Computer Science/Welsh eScience Centre, Cardiff University

2Department of Computer Science, University of Bath

Abstract

Matchmaking is one crucial tasks in agent-based systems and describes locating and identifying the most suitable services
among all available services. This paper introduces matchmaking of mathematical services, whereby the matching is
based on semantics using OpenMath object descriptions of pre- and post-conditions. A matchmaking architecture for
mathematical services is described containing four matching algorithms which achieve a structural match, a syntax and
ontological match, an algebraic equivalence match and a value substitution match. The matchmaking architecture calculates
the match scores which give an indication of the quality of the matches. A case study explains in detail how the matching
process for all four matching algorithms works.

1 Introduction

The amount of machine-oriented data on the Web is increas-
ing rapidly as semantic Web technologies achieve greater
up-take. At the same time, the deployment of agent/Web
Services is increasing and together create a problem for soft-
ware agents that is the analog of the human user searching
for the relevant HTML page. Humans typically use Google,
but they can filter out the irrelevant and spot the useful,
so while UDDI (the Web Services registry) with keyword
searching essentially offers something similar, it is a long
way from being very helpful. Consequently, there has been
much research on intelligent brokerage, such as Infosleuth
[8], LARKS [14], and IBROW [3]. It is perhaps telling
that much of the literature appears to focus on architectures
for brokerage, which are as such domain-independent, rather
than concrete or domain-specific techniques for identifying
matches between ataskor problem description and acapa-
bility or service description. Approaches to matching in the
literature fall into two broad categories:

• syntactic matching, such as textual comparison or the
presence of keywords in free text.

• semantic matching, which typically seems to mean
finding elements in structured (marked-up) data and
perhaps additionally the satisfaction of constraints
specifying ranges of values or relationships between
one element and another.

For many problems this is both appropriate and adequate,
indeed it is not clear what more one could do, but in the
particular domain of mathematical services the actual math-
ematical semantics are critical to determining the suitability
(or otherwise) of the capability for the task. The require-
ments are neatly captured in [5] by the following condition:

Tin ≥ Cin ∧Tout ≤ Cout ∧Tpre ⇒ Cpre ∧Cpost ⇒ Tpost (1)

whereT refers to the task,C to the capability,in are inputs,
out are outputs,pre are pre-conditions andpost are post-
conditions. What the condition expresses is that the signa-
ture constrains the task inputs to be at least as great as the
capability inputs (i.e. enough information), that the inverse
relationship holds for the outputs and there is a pairwise im-
plication between the respective pre- and post-conditions.
This however leaves unaddressed the matter of establishing
the validity of that implication.

In the MONET (Mathematics on the NET) [9] and
GENSS (Grid-Enabled Numerical and Symbolic Ser-
vices) [16] projects the objective is mathematical prob-
lem solving through service discovery and composition by
means of intelligent brokerage.Mathematicalcapability de-
scriptions turn out to be both a blessing and a curse: pre-
cise service description are possible thanks to the use of the
OpenMath [10] mathematical semantic mark-up, but service
matching can rapidly turn into intractable (symbolic) math-
ematical calculations unless care is taken.

2 eScience Relevance

A significant number of applications within eScience make
use of symbolic and numerical algorithms, developed as part
of a project or obtained from third parties (such as numerical
libraries from the Numerical Algorithms Group, or applica-
tions which use the Maple computer algebra system). The
complexity of such algorithms can vary from simple ma-
trix solving to more complex data analysis functions such
as clustering or classification techniques. The ability to ac-
cess such algorithms as Web Services allows easy integra-
tion of such capability within existing applications (while
also providing a loose coupling between the application and
the numerical algorithm). Existing eScience applications
are still embedding symbolic or numerical techniques di-

rectly within an application. However, the ability to sup-
port such a loose coupling allows a user to select between
multiple providers offering the same or a “similar” set of
symbolic or numerical algorithms (services). A key driver
of the work presented here is the ability to select between a
number of possible algorithm implementations – assuming
that the MONET approach has been adopted as the descrip-
tion technique for each algorithm. The approach therefore
has usage in a number of possible application areas, and is
not restricted to a particular scientific discipline. A “decom-
position” service that enables a combination of algorithms
to be combined to produce a similar results is currently be-
ing implemented, and makes use of mathematical reasoning
techniques to support such decomposition.

3 Mathematical Matchmaking

3.1 Description of Mathematical Services

In order to describe mathematics and to allow mathemat-
ical objects to be exchanged between computer programs,
stored in databases, or published on the worldwide web an
emerging standard called OpenMath [17] has been intro-
duced. OpenMath is a mark up language for representing the
semantics (as opposed to the presentation) of mathematical
objects in an unambiguous way. It may be expressed using
an XML syntax. OpenMath expressions are composed of
a small number of primitives. The definition of these may
be found in [17], for instance:OMA(OpenMath Applica-
tion), OMI (OpenMath Integer),OMS(OpenMath Symbol)
andOMV(OpenMath Variable). Symbols are used to repre-
sent objects defined in the Content Dictionaries (to be dis-
cussed), applications specify that the first child is a function
or operator to be applied to the following children whilst the
variables and integers speak for themselves. As an example,
the expressionx + 1 might look like:1

<om:OMA>
<om:OMS cd="arith1" name="plus"/>
<om:OMV name="x"/>
<om:OMI> 1 </om:OMI>

</om:OMA>

where the symbolplus is defined in theContent Dictionary
(CD) arith1 . Content Dictionaries are definition reposito-
ries in the form of files defining a collection of related sym-
bols and their meanings, together with variousCommented
Mathematical Properties(for human consumption) andFor-
mal Mathematical Properties(for machine consumption).
The symbols may be uniquely referenced by the CD name
and symbol name via the attributescd and name respec-
tively, as in the above example. Another way of thinking of
a CD is as a small, specialised ontology.

1Throughout the paper, the prefixom is used to denote the namespace:
http://www.openmath.org/OpenMath

3.2 Matchmaking Requirements

To achieve matchmaking:

1. we want sufficient input information in the task to sat-
isfy the capability, while the outputs of the matched ser-
vice should contain at least as much information as the
task is seeking, and

2. the task pre-conditions should be more than satisfied by
the capability pre-conditions, while the post-conditions
of the capability should be more than satisfied by the
post-conditions of the task.

These constraints reflect work in component-based software
engineering and are, in fact, derived from [19]. They are also
more restrictive than is necessary for our setting, by which
we mean that some inputs required by a capability can read-
ily be inferred from the task, such as the lower limit on a
numerical integration or the dependent variable in a sym-
bolic integration. Conversely, a numerical integration rou-
tine might only work from0 to the upper limit, while the
lower limit of the problem is non-zero. A capability that
matches the task can be synthesised from the composition of
two invocations of the capability with the fixed lower limit
of 0. Clearly the nature of the second solution is quite differ-
ent from the first, but both serve to illustrate the complexity
of this domain. It is precisely this richness too that dictates
the nature of the matchmaking architecture, because as these
two simple examples show, very different reasoning capabil-
ities are required to resolve the first and the second. Further-
more, we believe that given the nature of the problem, it is
only very rarely that a task description will match exactly
a capability description and so a range of reasoning mecha-
nisms must be applied to identify candidate matches. This
results in:

Requirement 1: A plug-in architecture support-
ing the incorporation of an arbitrary number of
matchers.

The second problem is a consequence of the above: there
will potentially be several candidate matches and some
means of indicating their suitability is desirable, rather than
picking the first or choosing randomly. Thus:

Requirement 2: A ranking mechanism is re-
quired that takes into account pure technical (as
discussed above in terms of signatures and pre-
and post-condition) and quantitative and qualita-
tive aspects—and even user preferences.

3.3 Matchmaking Architecture

Our matchmaking architecture is shown in Figure 1 and
comprises the following:

Figure 1: Matchmaking Architecture

• The client interface: this is employed by users to spec-
ify their service request.

• The matchmaker: this contains a reasoning engine and
the matching module.

• Matching Algorithms: which define the logic of the
matching process.

• Mathematical ontologies: including OpenMath Con-
tent Dictionaries (CDs), GAMS (General Algebraic
Modeling System)etc.

• A registry service: which enables the storage of math-
ematical services.

• Mathematical Web Services: available on third party
sites, accessible over the Web.

The interactions of a search request are as follows:

1. The user contacts the matchmaker.

2. The matchmaker loads the matching algorithms speci-
fied by the user via a lookup in the UDDI registry. In
the case of an ontological match a further step is nec-
essary. This is, the matchmaker contacts the reasoner
which in turn loads the corresponding ontology.

3. Having additional match values results in the registry
being queried, to see whether it contains services which
match the request.

4. Service details are returned to the user via the match-
maker.

The parameters stored in the registry (a database) are ser-
vice name, URL, taxonomy, input, output, pre- and post-
conditions. Using contact details of the service from the reg-
istry, the user can then call the Web Service and interact with
it. Each component of the architecture is now described in
more detail.

Figure 2: Matchmaker Client Application

3.3.1 Client

The Client application2 (shown in Figure 2) allows the user
to specify the service request via entry fields for pre- and
post-conditions. The matchmaker returns the matches in the
table at the bottom of the GUI listing the matched services
ranked by similarity. Subsequently the user can invoke the
service by clicking on the URL.

3.3.2 Matching Algorithms

Currently four matching algorithms have been implemented
within the matchmaker. These are structural match, syn-
tax and ontological match, algebraic equivalence match and
value substitution match. Service descriptions defined in
OpenMath allow descriptions of mathematical pre- and post-
conditions. The structural match compares the OpenMath
hierarchy at thetag level, without inspecting the attribute
values. The syntax and ontological match algorithms go a
step further and compare theOMSelementscd andnameat-
tributes values. The algebraic equivalence match and value
substitution match perform mathematical reasoning on the
mathematical objects which make up the pre- and post- con-
ditions.

Structural Match The pre- and post-conditions are ex-
tracted and an SQL query is built to find the same OpenMath
structure of the pre-/post- conditions of the service descrip-
tions in the database.

Ontological Match This match is performed similarly,
however the OpenMath elements are compared with an on-
tology representing the OpenMath elements. The match-
making mechanism allows a more effective matchmaking
process by using mathematical ontologies. Let us assume
that the part of the ontology given by the CD setname1 sat-
isfies: C ⊃ R ⊃ Q ⊃ Z ⊃ N ⊃ P. If the user query
contains the OpenMath element:
<om:OMS cd=’setname1’name=’Z’/>

2http://agentcities.cs.bath.ac.uk:8080/
genss axis/GENSSMatchmaker/index.htm

and the service description:
<om:OMS cd=’setname1’ name=’P’/>
The query finds the entitiesZ andP and determines the sim-
ilarity value depending on the distance between the two. We
must note the implications given in equation 1, which im-
ply that a queries pre-conditions must be less general than
a capabilities (further to the ’right’ in the above ontology).
Whilst a queries post-condition must be more general than a
capabilities (further to the ’left’ in the above ontology). The
above similarity value isSV = 1

n = 0.5, wheren is the de-
gree of separation of the concepts. For both the ontological
and structural match, it is necessary that the pre- and post-
conditions are in some standard form. For instance, consider
the algebraic expressionx2 − y2, this could be represented
in OpenMath as:

<om:OMOBJ><om:OMA>
<om:OMS cd="arith1" name="minus"/>
<om:OMA>

<om:OMS cd="arith1" name="power"/>
<om:OMV name="x"/>
<om:OMI>2</om:OMI>

</om:OMA>
<om:OMA>

<om:OMS cd="arith1" name="power"/>
<om:OMV name="y"/>
<om:OMI>2</om:OMI>

</om:OMA></om:OMA>
</om:OMOBJ>

however,x2−y2 = (x+y)(x−y), leading to ontologically
and structurally different markup. Both are correct, it just
depends on what information is required, so there can in gen-
eral be no canonical form. In order to address the above ob-
servation, we must look deeper into the mathematical struc-
ture of the expressions which make up the conditions. Most
of the conditions examined may be expressed in the form:
Q(L(R)) where:Q is a quantifier block, e.g.∀x∃y s.t. · · ·,
L is a block of logical connectives, e.g.∧,∨,⇒, · · ·, R is a
block of terms, e.g.=,≤,≥, 6=, · · ·.

In most cases, the quantifier block will just be a range
restriction. Sometimes it may be possible to usequanti-
fier elimination to replace the quantifier block by an aug-
mented logical block. Once the quantifier elimination has
been performed on the query descriptions and the service
descriptions, the resulting logical blocks must be converted
into normal forms. The normal form we find useful for our
matching technique is Disjunctive Normal Form. That is ev-
ery logical block shall be converted into a Disjunction of
conjunctions of terms. It is useful to note that a term is of
the general form:TL � TR where� is some relation i.e. a
predicate on two arguments. In the case thatTL andTR are
real valued, we may proceed as follows: we have two terms
we wish to compareQL � QR andSL � SR, we first iso-
late an output variabler, this will give us termsr � Q and
r � S. There are two approaches which we now try in order
to prove equivalence ofr � Q andr � S:

Algebraic Equivalence MatchWith this approach we try
to show that the expression (Q − S = 0) using algebraic
means. There are many cases were this approach will work,

Figure 3: GAMS Taxonomy Fragment

however it has been proved [11] that in general this problem
is undecidable. Another approach involves substitution of
r determined from the conditionr � S into r � Q, and
subsequently proving their equivalence.

Value Substitution Match With this approach we try to
show that (Q − S = 0) by substituting random values for
each variable in the expression, then evaluating and check-
ing to see if the valuation we get is zero. This is evidence
that (Q − S = 0), but is not conclusive, since we may have
been unlucky in the case that the random values coincide
with a zero of the expression.

3.3.3 Service Registry

The mathematical service descriptions are stored in a
database comprising the following tables: service, taxon-
omy, input, output, precond and postcond, and omsymbol.
For the matching of pre- and post-conditions, the tables om-
symbol, precond and postcond are used. The other tables
give additional details about a service once the matching is
done, in order for the user to select the appropriate service
from the returned list.

3.3.4 Mathematical Ontologies and Reasoning Engine

The subject of ontology is the study of the categories of
things that exist or may exist in some domain [13]. An on-
tology is a catalogue of the types of things that are assumed
to exist in a domain of interest from the perspective of a per-
son who uses a language for the purpose of talking about
a domain. The types in the ontology represent the predi-
cates, word meanings, or concept and relation types of the
language when used to discuss topics in the domain. An
uninterpreted logic is ontologically neutral: It imposes no
constraints on the subject matter or the way the subject is
characterised. Logic alone says nothing about anything, but
the combination of logic with an ontology provides a lan-
guage that can express relationships about the entities in the
domain of interest. The matchmaking mechanism which al-

lows a more efficient service discovery by using mathemat-
ical ontologies such as GAMS shown in Figure 3 are de-
scribed in a semantic language and a reasoning engine can
inference the ontology [7]. Used for the service discovery
process was OWLJessKB [2]. It is intended to facilitate
reading OWL files, interpreting the information as per OWL
and RDF languages and allowing the user to query on that in-
formation. It then inserts these triples as facts into the JESS
knowledge base [1]. With some predefined rules, JESS can
reason about the triples and can draw more inferences. The
JESS API (Application Programming Interface) is intended
to facilitate interpretation of information of OWL files, and
it allows users to query on that information. It leverages the
existing RDF API to read in the OWL file as a collection of
RDF triples.

3.3.5 Matchmaker

Algorithm 1 Matchmaking
PrCQ: Pre-conditions of query
PoCQ: Post-conditions of query
PrCS: Pre-conditions of service
PoCS: Post-conditions of service
SV PrC: Similarity values of Pre-conditions
SV PoC: Similarity values of Post-conditions
MV PrC: Match values of Pre-conditions
MV PoC: Match values of Post-conditions
MV O: Overall match score of service
SD: Service details
MD: Match details of service

PrCQ← read In PreConds From GUI()
PoCQ← read In PostConds From GUI()
connect To DB()

for all service In DB do
PrC ← read PreConds From DB()
for PrCS do

SV PrC ← select Match Algo()
end for
MV PrC ← calculate Match V alue()
PoCS ← read PostConds From DB()
for PoCS do

SV PoC ← select Match Algo()
end for
MV PoC ← calculate Match V alue()
MV O ← calculate Match Score()
SD ← retrieve Service Details()
MD ← store Match Details()

end for
disconnect From DB()
return MD

The matchmaking algorithm is specified in Algorithm 1.
The pre- and post-conditions are read from the GUI first.
Then a connection to the database is made. For all services
in the database, first the pre-conditions are read and for each
the matching algorithm selected is applied – which returns a
similarity value. For all similarity values of pre-conditions
a match value is calculated and stored. The same procedure
is then used for the post-conditions. For each service the
match values for all pre- and post-conditions are calculated
and stored together with the service details.

The overall consideration within the matchmaking ap-
proach is to get a match score returned which should be be-
tween 0 and 1, where 0 represents no match and 1 represents

an exact match (2). Looking at the pre- and post-conditions
separately, it is first of all necessary to determine the ratio
of the number of pre-conditions given in the query in rela-
tion to the number given by the actual service where some
or all pre- or post-conditions match. To make sure that this
ratio does not exceed 1, a normalisation is performed with
the inverse of the sum of both values. This is multiplied
by the sum of the similarity values for each match of a pre-
condition divided by the number of actual matches in order
to keep the overall score value between 0 and 1 (3). The
same is done with the post-conditions (4). The importance
of the pre- or post-conditions is reflected in the weight val-
ues. The match scores may be calculated using the following
equations:

MO =
MA + MB

2
(2)

MA =
wa

|AQ| + |AS |
∗
|AQ|

|AS |
∗

∑|A|
i=1(SVA(i)))

|A|
where 0 ≤ wa ≤ 1 (3)

MB =
wb

|BQ| + |BS |
∗
|BQ|

|BS |
∗

∑|B|
i=1(SVB(i)))

|B|
where 0 ≤ wb ≤ 1 (4)

In the above,MO, MA, MB are the overall, the pre-
condition and the post-condition match scores respectively.
|{c}| denotes the number of conditions in{c}, AQ andAS

are pre-conditions,BQ andBS are post-conditions, the sub-
scriptsQ andS refer to the queries and services respectively.
A, B are a set of matched pre-conditions, post-conditions
respectively andSVA(i), SVB(i) are the similarity values
for the ith matched pre-condition, post-condition respec-
tively.

4 Case Study

For the case study we consider all four matching modes. The
Factorisor service we shall look at is a service which finds all
prime factors of an Integer. The Factorisor has the following
post-condition:

<om:OMOBJ>
<om:OMA>

<om:OMS cd =’relation1’ name =’eq’/>
<om:OMV name =’n’/>
<om:OMA>

<om:OMS cd =’fns2’ name =’apply_to_list’/>
<om:OMS cd =’arith1’ name =’times’/>
<om:OMV name =’lst_fcts’/>

</om:OMA>
</om:OMA>

</om:OMOBJ>

wheren is the number we wish to factorise andlst_fcts
is the output list of factors.

As the structural and ontological modes compare the
OpenMath structure of queries and services, and the alge-
braic equivalence and substitution modes perform mathe-
matical reasoning, the case study reflects this by providing
two different types of queries.

For the structural and ontological mode let us assume that
the user specifies the following query:

<om:OMOBJ>
<om:OMA>

<om:OMS cd =’fns2’ name =’apply_to_list’/>
<om:OMS cd =’arith1’ name =’plus’/>
<om:OMV name =’lst_fcts’/>

</om:OMA>
</om:OMOBJ>

• For the structural match, the query would be split into
the followingOMcollection:OMA, OMS, OMS, OMVand
/OMA in order to search the database with this given
pattern. The match score of the post-condition results
in a value of 0.27778 using the equations described ear-
lier.

• The syntax and ontology match works slightly different
as it also considers thevaluesof theOMsymbols. In our
example we have threeOMsymbol structures. There are
two instances ofOMSand one ofOMV. First the query
and the service description are compared syntactically.
If there is no match, then the ontology match is called
for the OMSstructure. The value of the content dic-
tionary (CD) and the value of the name are compared
using the ontology of that particular CD. In this case
the result is a match score of 0.22222. If theOMstruc-
ture of the service description is exactly the same as the
query then the structural match score is the same as for
the syntax and ontology match.

The post-condition for the Factorisor service represents:

n =

l∏
i=1

lst fctsi where l = |lst fcts| (5)

A user asking for a service with post-condition:

∀i|1 ≤ i ≤ |lst fcts| ⇒ n mod lst fctsi = 0 (6)

should get a match to this Factorisor service.
To carry out the algebraic equivalence match we use a proof
checker to show that:

• equation (5)⇒ equation (6): This is clear since the
value of n may be substituted into equation (5) and
the resulting equality will be true for each value in
lst fcts .

• equation (6)⇒ equation (5): A slightly stronger ver-
sion of equation (6) which says that there are no other
numbers which dividen.

To compute the value substitution match we must gather ev-
idence for the truth of equations 5 and 6 by considering a
number of random examples, we proceed as follows:

• We first need to decide on the length of the list for
our random example. A good basis would be to take
|lst fcts| = dlog2(n)e, this represents a bound on
the number of factors in the input number.

• We then collect that number of random numbers, each
of size bounded by

√
n.

• Then we calculate their product, from equation (5), this
gives a new value forn.

• We may now check equation (6). We see that it is true
for every value inlst fcts .

If we try this for a few random selections, we obtain evi-
dence for the equivalence of equations (5) and (6).

5 Related Work

A variety of matchmaking systems have been reported in
literature, we review some related systems below.

The SHADE (SHAred Dependency Engineering) match-
maker [6] operates over logic-based and structured text lan-
guages. The aim is to dynamically connect information
sources. The matchmaking process is based on KQML
(Knowledge Query and Manipulation Language) communi-
cation [15]. Content languages of SHADE are a subset of
KIF (Knowledge Interchange Format) [4] as well as a struc-
tured logic representation called MAX (Meta-reasoning Ar-
chitecture for “X”). Matchmaking is carried out solely by
matching the content of advertisements and requests. There
is no knowledge base and no inference performed.

COINS (COmmon INterest Seeker) [6] is a matchmaker
which operates over free text. The motivation for the COINS
is the need for matchmaking over large volumes of unstruc-
tured text on the Web or other Wide Area Networks and the
impracticality of using traditional matchmakers in such an
application domain. Initially the free text matchmaker was
implemented as the central part of the COINS system but it
turned out that it was also useful as a general purpose fa-
cility. As in SHADE the access language is KQML. The
System for the Mechanical Analysis and Retrieval of Text
(SMART) [12] information retrieval system is used to pro-
cess free text. The text is converted into a document vector
using SMART’s stemming and “noise” word removal. Then
the document vectors are compared using an inverse docu-
ment frequency algorithm.

LARKS (Language for Advertisement and Request for
Knowledge Sharing) [14] was developed to enable interop-
erability between heterogeneous software agents and had a
strong influence on the DAML-S specification. The sys-
tem uses ontologies defined by a concept language ITL (In-
formation Terminology Language). The technique used to
calculate the similarity of ontological concepts involves the
construction of a weighted associative network, where the
weights indicate the belief in relationships. While it is ar-
gued that the weights can be set automatically by default,
it is clear that the construction of realistically weighted re-
lationships requires human involvement, which becomes a
hard task when thousands of agents are available.

InfoSleuth [8] is a system for discovery and retrieval of in-
formation in open and dynamically changing environments.
The brokering function provides reasoning over the adver-
tised syntax and the semantics. InfoSleuth aims to support
cooperation among several software agents for information
discovery, where agents have roles as core, resource or on-
tology agents. A central service is the broker agent which
is equipped with a matchmaker which matches agents that
require services with agents that can provide those services.
To apply this procedure an advertising agent has to register
with the broker agent. The broker inserts the agent’s descrip-
tion into its broker repository. The broker can then execute
queries by requesting agents. These queries are formulated
by agents who need other agents to fulfil their tasks.

The GRAPPA [18] (Generic Request Architecture for
Passive Provider Agents) system allows multiple types of
matchmaking mechanisms to be employed within a system.
It is based on receiving arbitrary matchmaking offers and
requests, where each offer and request consist of multiple
criteria. Matching is achieved by applying distance func-
tions which compute the similarities between the individual
dimensions of an offer and a request. Using particular ag-
gregate functions, the similarities are condensed to a single
value and reported to the user.

MathBroker is a project at RISC-Linz with some elements
in common with those described here, including providing
semantic descriptions of mathematical services. It too uses
MSDL, however it seems that most of the matchmaking is
achieved through traversing taxonomies, while actual un-
derstanding of the pre- and post-conditions is still an open
problem.

Most of the projects above have focused on providing a
generic matchmaker, capable of being adapted for a partic-
ular application. However, the motivation for many such
projects has primarily been e-commerce (as a means to
match buyers with sellers, for instance). Some projects are
also focused on the use of a particular multi-agent interac-
tion language (such as KQML), to enable communication
between the matchmaker and other agents. Our approach,
however, is centered on the implementation of a match-
maker that is specific to mathematical relations. Similar to
GRAPPA, our matchmaker can support multiple comparison
techniques.

6 Conclusion

We have presented an approach to matchmaking in the con-
text of mathematical semantics. The additional semantic in-
formation greatly assists in identifying suitable services in
some cases, but also significantly complicates matters in oth-
ers, due to their inherent richness. Consequently, we have
put forward an extensible matchmaker architecture support-
ing plug-in matchers that may employ a variety of reasoning
techniques, utilising theorem provers and computer algebra

systems as well as information retrieval from textual doc-
umentation of mathematical routines. Although our set of
test cases is as yet quite small, the results are promising and
we foresee the outputs of the project being of widespread
utility in both the e-Science and Grid communities, as well
as more generally advancing semantic matchmaking tech-
nology. Although the focus here is on matchmaking math-
ematical capabilities, the descriptive power, deriving from
quantification and logic combined with the extensibility of
OpenMath creates the possibility for an extremely powerful
general purpose mechanism for the description of both tasks
and capabilities. In part, this appears to overlap, but also
to complement the descriptive capabilities of OWL and, in
much the same way as it was applied in MONET, we expect
to utilise OWL reasoners as plug-in matchers in the archi-
tecture we have set out.

7 Acknowledgments

The work reported here is partially supported by the Engi-
neering and Physical Sciences Research Council under the
Semantic Grids call of the e-Science program (grant refer-
ence GR/S44723/01).

References

[1] Java expert systems shell.http://herzberg.ca.
sandia.gov/jess/docs/61/index.html .

[2] OWLJessKB. http://edge.cs.drexel.edu/
assemblies/software/owljesskb/ .

[3] V.R. Benjamins, B. Wielinga, J. Wielemaker, and
D. Fensel. Towards Brokering Problem-Solving
Knowledge on the Internet. In Dieter Fensel and
Rudi Studer, editors,Proceedings of the 11th Euro-
pean Workshop on Knowledge Acquisition, Modeling
and Management (EKAW-99), volume 1621 ofLNAI,
pages 33–48, Berlin, May 26–29 1999. Springer.

[4] M. Genesereth and R. Fikes. Knowledge interchange
format, version 3.0 reference manual. Technical report,
Computer Science Department, Stanford University.
Available from http://www-ksl.stanford.
edu/knowledge-sharing/papers/kif.ps .

[5] Mario Gomez and Enric Plaza. Extended matchmaking
to maximize capability reuse. In Nicholas R. Jennings,
Carles Sierra, Liz Sonnenberg, and Milind Tambe, edi-
tors,Proceedings of The Third International Joint Con-
ference on Autonomous Agents and Multi Agent Sys-
tems, volume 1, pages 144–151. ACM Press, 2004.

[6] D. Kuokka and L. Harada. Integrating information via
matchmaking.Intelligent Information Systems 6(2-3),
pp. 261-279, 1996.

[7] S.A. Ludwig. Flexible semantic matchmaking engine.
In Proceedings of 2nd IASTED International Confer-
ence on Information and Knowledge Sharing (IKS),
AZ, USA, 2003.

[8] W. Bohrer M. Nodine and A.H. Ngu. Semantic broker-
ing over dynamic heterogenous data sources in infos-
leuth. InProceedings of the 15th International Confer-
ence on Data Engineering, pp. 358-365, 1999.

[9] MONET Consortium. MONET Home Page, www.
Available fromhttp://monet.nag.co.uk .

[10] OpenMath Society. OpenMath website.http://
www.openmath.org , February www.

[11] D. Richardson. Some Unsolvable Problems Involving
Elementary Functions of a Real Variable.Journal of
Computational Logic, 33:514–520, 1968.

[12] G. Salton. Automatic Text Processing. Addison-
Wesley, 1989.

[13] J.F. Sowa. Ontology, metadata, and semiotics, concep-
tual structures: Logical, linguistic, and computational
issues. Lecture Notes in AI #1867, Springer-Verlag,
Berlin, pp. 55-81, 2000.

[14] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dy-
namic matchmaking among heterogeneous software
agents in cyberspace.Journal of Autonomous Agents
and Multi Agent Systems, 5(2):173–203, June 2002.

[15] D. McKay T. Finin, R. Fritzson and R. McEntire. Kqml
as an agent communication language. InProceedings
of 3rd International Conference on Information and
Knowledge Management, pp. 456-463, 1994.

[16] The GENSS Project. GENSS Home Page, www.
Available from http://genss.cs.bath.ac.
uk .

[17] The OpenMath Society. The OpenMath
Standard, October 2002. Available from
http://www.openmath.org/standard/
om11/omstd11.xml .

[18] D. Veit. Matchmaking in Electronic Markets, volume
2882 ofLNCS. Springer, 2003. Hot Topics.

[19] Amy Moormann Zaremski and Jeannette M. Wing.
Specification matching of software components.ACM
Transactions on Software Engineering and Methodol-
ogy, 6(4):333–369, October 1997.

