
Agent-based Matchmaking of Mathematical Web Services

Simone A. Ludwig and Omer F. Rana
School of Computer Science

Cardiff University
Cardiff, UK

{scmsal,scmofr}@cs.cardiff.ac.uk

William Naylor and Julian Padget
Department of Computer Science

University of Bath
Bath, UK

{wn,jap}@bath.ac.uk

ABSTRACT
Service discovery and matchmaking in a distributed envi-
ronment has been an active research issue since at least
the mid 1990s. Previous work on matchmaking has typi-
cally presented the problem and service descriptions as free
or structured (marked-up) text, so that keyword searches,
tree-matching or simple constraint solving are sufficient to
identify matches. We discuss the problem of matchmaking
for mathematical services, where the semantics play a crit-
ical role in determining the applicability or otherwise of a
service and for which we use OpenMath descriptions of pre-
and post-conditions. We describe a matchmaking architec-
ture supporting the use of match plug-ins.

1. INTRODUCTION
The amount of machine-oriented data on the Web is in-

creasing rapidly as semantic Web technologies achieve greater
up-take. At the same time, the deployment of agent/Web
Services is increasing and together create a problem for soft-
ware agents that is the analog of the human user searching
for the right HTML page. Humans typically use Google,
but they can filter out the irrelevant and spot the useful,
so while UDDI (the Web Services registry) with keyword
searching essentially offers something similar, it is a long
way from being very helpful. For many problems this is both
appropriate and adequate, indeed it is not clear what more
one could do, but in the particular domain of mathematical
services the actual mathematical semantics are critical to
determining the suitability (or otherwise) of the capability
for the task. In the MONET (Mathematics on the NET) [2,
1] and GENSS (Grid-Enabled Numerical and Symbolic Ser-
vices) [5] projects the objective is mathematical problem
solving through service discovery and composition by means
of intelligent brokerage. Mathematical capability descrip-
tions turn out to be both a blessing and a curse: precise
service descriptions are possible thanks to the use of the
OpenMath [3] mathematical semantic mark-up, but service
matching can rapidly turn into intractable (symbolic) math-
ematical calculations unless care is taken.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Figure 1: Matchmaking Architecture

2. MATHEMATICAL MATCHMAKING

2.1 Matchmaking Architecture
Our matchmaking architecture is shown in Figure 1 and

comprises the following:

• Client interface: employed by the user to specify their
service request.

• Matchmaker: contains the reasoning engine and match-
ing module.

• Matching Algorithms: where the logic of the matching
is defined.

• Mathematical ontologies: such as OpenMath Content
Dictionaries (CDs), GAMS (General Algebraic Mod-
eling System) etc.

• Registry service: where the mathematical service de-
scriptions are stored.

• Mathematical Web Services: available on third party
sites, accessible over the Web.

The interactions of a search request are as follows: (1) the
user contacts the matchmaker, then (2) the matchmaker
loads the matching algorithms specified by the user; in the
case of an ontological match, further steps are necessary; (3)
the matchmaker contacts the reasoner which in turn loads
the corresponding ontology; (4) having additional match val-
ues results in the registry being queried, to see whether it
contains services which match the request and finally (5)
service details are returned to the user via the matchmaker.

The parameters stored in the registry (a database) are ser-
vice name, URL, taxonomy, input, output, pre- and post-
conditions. Using contact details of the service from the
registry, the user can then invoke the mathematical Web
Service.

2.2 Matching Algorithms
Currently four matching algorithms have been implemen-

ted within the matchmaker. These are structural match,
syntax and ontological match, algebraic equivalence match
and value substitution match. Service descriptions defined
in OpenMath allow descriptions of mathematical pre- and
post-conditions. The structural match only compares the
OpenMath symbol element structures (e.g. OMA, OMS, OMV
etc.). The syntax and ontological match algorithm goes a
step further and compares the OMS elements cd and name at-
tributes values. The algebraic equivalence match and value
substitution match do actual mathematical reasoning using
the OpenMath structure.

The structural match works as follows. The pre- and
post-conditions are extracted and an SQL query is built to
find the same OpenMath structure of the pre-/post- condi-
tions of the service descriptions in the database.

The ontological match is performed similarly, however
the OpenMath elements are compared with an ontology rep-
resenting the OpenMath elements. The matchmaking mech-
anism allows a more effective matchmaking process by using
mathematical ontologies. Let us assume that the part of the
ontology given by the CD setname1 satisfies: C ⊃ R ⊃ Q ⊃
Z ⊃ N ⊃ P. If the user query contains the OpenMath el-
ement <om:OMS cd=’setname1’ name=’Z’/> and the service
description comprises <om:OMS cd=’setname1’ name=’P’/>,
then the query finds the entities Z and P and determines
the similarity value depending on the distance between the
two entities (inclusive, on one side) which in this case is
SV = 1

n
= 0.5, where n is the degree of separation of the

concepts. For both the ontological and structural match, it
is necessary that the pre- and post-conditions are in some
standard form. For instance, consider the algebraic expres-
sion x2 − y2, this could be represented in OpenMath as:

<om:OMOBJ><om:OMA>
<om:OMS cd="arith1" name="minus"/>
<om:OMA>

<om:OMS cd="arith1" name="power"/>
<om:OMV name="x"/>
<om:OMI>2</om:OMI>

</om:OMA>
<om:OMA>

<om:OMS cd="arith1" name="power"/>
<om:OMV name="y"/>
<om:OMI>2</om:OMI>

</om:OMA></om:OMA>
</om:OMOBJ>

however, x2−y2 = (x+y)(x−y), leading to ontologically and
structurally different markup. Both are ”right”, it just de-
pends on what information is wanted, so there can in general
be no canonical form. In order to address the above observa-
tion, we must look deeper into the mathematical structure of
the expressions which make up the conditions. Most of the
conditions examined may be expressed in the form: Q(L(R))
where: Q is a quantifier block, e.g. ∀x∃y s.t. · · · , L is a block
of logical connectives, e.g. ∧,∨,⇒, · · · and R is a block of
relations, e.g. =,≤,≥, 6=, · · · .

In most cases, the quantifier block will just be a range
restriction. Sometimes it may be possible to use quantifier

elimination to replace the quantifier block by an augmented
logical block. Once the quantifier elimination has been per-
formed on the query descriptions and the service descrip-
tions, the resulting logical blocks must be converted into
normal forms. We now have a disjunction of terms which
we are matching against a set of conjunctions of terms. It is
useful to note that a term is of the general form: TL � TR

where � is some relation i.e. a predicate on two arguments.
In the case that TL and TR are real valued, we may proceed
as follows: we have two terms we wish to compare QL � QR

and SL � SR, we first isolate an output variable r, this will
give us terms r � Q and r � S. There are two approaches
which we now try in order to prove equivalence of r � Q
and r � S:

Algebraic equivalence — With this approach we try
to show that the expression (Q − S = 0) using algebraic
means. There are many cases were this approach will work,
however it has been proved [4] that in general this problem
is undecidable. Another approach involves substitution of
r determined from the condition r � S into r � Q, and
subsequently proving their equivalence.

Value substitution — With this approach we try to
show that (Q − S = 0) by substituting random values for
each variable in the expression, then evaluating and checking
to see if the valuation we get is zero. This is evidence that
(Q− S = 0), but is not conclusive, since we may have been
unlucky in the case that the random values coincide with a
zero of the expression.

3. CONCLUSION
We have presented an approach to matchmaking in the

context of mathematical semantics. The additional semantic
information greatly assists in identifying suitable services in
some cases, but also significantly complicates matters in oth-
ers, due to inherent richness of the service description. Con-
sequently, we have put forward an extensible matchmaker
architecture supporting plug-in matchers that may employ
various reasoning techniques, utilising theorem provers and
computer algebra systems as well as information retrieval
from textual documentation of mathematical routines.

4. ACKNOWLEDGEMENTS
The work reported here is partially supported by the En-

gineering and Physical Sciences Research Council under the
Semantic Grids call of the e-Science program (grant refer-
ence GR/S44723/01).

5. REFERENCES
[1] O. Caprotti et al. Mathematics on the (Semantic) Net.

In Proceedings of the European Symposium on the
Semantic Web, volume 3053 of LNCS, pages 213–224.
Springer Verlag, 2004. May 2004.

[2] MONET Consortium. MONET Home Page, www.
Available from http://monet.nag.co.uk.

[3] OpenMath Society. OpenMath website.
http://www.openmath.org, February www.

[4] D. Richardson. Some Unsolvable Problems Involving
Elementary Functions of a Real Variable. Journal of
Computational Logic, 33:514–520, 1968.

[5] The GENSS Project. GENSS Home Page, www.
Available from http://genss.cs.bath.ac.uk.

