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Improving Distributed Semantic Search with Hybrid 
Topology and Peer Recommendation 

Juan Li 1 

Abstract. In this paper, we propose a novel framework for discovery Semantic 
Web data in large-scale distributed networks. In this framework, peers dynami-
cally perform topology adaptations to spontaneously create communities with 
similar semantic interests, so that search requests have a high probability of being 
satisfied within the local community. For queries which cannot be efficiently 
solved inside the community, a directory overlay built on Distributed Hash Table 
(DHT) is used to assist the search. Recommendation from peers of the same com-
munity is employed to extract only semantically related results thus improving the 
precision. Experiments with simulations substantiate that our techniques signifi-
cantly improve the search efficiency, scalability, and precision. 

1   Introduction 

Semantic web has been presented as an evolving extension of World Wide Web 
[1, 2, 3]. With the development of semantic web technologies, more and more se-
mantic web data are generated and widely used in Web applications and enterprise 
information systems.  These data are structured with ontologies [4] for the purpose 
of comprehensive and transportable machine understanding. To fully utilize the 
large amount of semantic data, an effective search mechanism customized for se-
mantic web data, especially for ontologies, is needed by human users as well  
as software agents and services. The unique semantic features and the inherent 
distributed nature of semantic web data make its discovery highly challenging. 

Peer-to-peer (P2P) technology has been used as a solution to distributed resource 
discovery, since it scales to very large networks, while ensuring high autonomy and 
fault-tolerance. The recently proposed structured P2P systems in the form of DHTs 
[5-8] are a promising approach for building massively distributed data management 
platforms. However, they offer few data management facilities, limited to IR (In-
formation Retrieval) -style keyword search. Keyword search is appropriate for sim-
ple file-sharing applications, but is unable to deal with complex semantic queries 
which have various properties and sophisticated relations with each other.  

More recently, a few studies [9, 10] extended the DHT-based P2P to support 
semantic queries. The basic idea is to map each keyword of a semantic entity to a 
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key. For example, RDFPeer [9] indexes each RDF [20, 21] triple to support se-
mantic RDF query. A query with multiple keywords then uses the DHT to lookup 
each keyword and returns the intersection. Systems like [8] avoid this multiple 
lookup and intersection by storing a complete keyword list of an object on each 
node. In this way, the DHTs can support multi-keywords queries. However, DHTs 
still have difficulty to support other richer queries, such as wildcard queries, fuzzy 
queries, and proximity queries. In addition, most DHT-based applications require 
all peers in the system sharing a uniform ontology schema, which is impractical in 
reality. These limitations restrict the deployment of DHTs to semantic web data 
discovery.  

To support flexible complex queries, many P2P systems [11, 12] use flooding 
or maintain a broadcast structure, such as a tree or a super cube, to propagate the 
queries to the network. For example, to execute an RDF query, Edutella [11] 
broadcasts the query to the whole hypercube. However, the overhead of flooding 
and broadcast may cause scalability issues.  

To overcome the shortcomings of existing discovery approaches, we propose a 
hybrid search mechanism, which integrates structured DHT P2P technology with 
unstructured P2P technology. Recommendation feedback from semantically simi-
lar peers is employed to retrieve the most relevant results thus improving the effi-
ciency and precision of searching. In our system, each node is associated with a 
semantic summary representing the node’s interest.  Based on the summary, we 
design a method to compute the semantic similarity between different nodes. The 
network topology is reconfigured with respect to nodes’ semantic similarity, so 
that peers with similar semantics are close to each other, forming a semantic 
community. The semantic community is loosely structured as an unstructured P2P 
overlay, called community overlay. Because of its unstructured topology, the 
community overlay is able to handle flexible complex queries. The semantic local-
ity property guarantees that the system’s query evaluation can be limited to  
relevant peers only. A structured DHT-based overlay is used to facilitate the con-
struction of the community overlay and to assist evaluating queries which cannot 
be effectively resolved by the community overlay.  

Members in the same community share similar interests hence are able to make 
recommendations to each other. Recommendations allow users to disambiguate 
search requests quickly. Moreover, they can personalize query results for users by 
ranking higher the results that are relevant to users’ semantic properties. There-
fore, the search quality in terms of both precision and recall is improved. In addi-
tion, peers recommend neighbors for each other according to their query  
experience to adapt to the evolving network property. 

With the assistance of peer recommendation, community overlay and directory 
overlay complement each other, providing efficient search for the system. Com-
pared to search in pure structured P2P systems, our hybrid search system has  
inherent support for complex semantic query or partial match; in addition, the re-
trieved results are more relevant. Compared to search in pure unstructured P2P 
systems, our community-based structure saves the overhead of flooding the query 
to unrelated nodes, thus enjoying more scalability.  
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2   System Overview 

This section gives an overview of the system architecture. The proposed system 
consists of two logical overlays – an unstructured community overlay and a struc-
tured directory overlay –taking different roles for efficient operations of the system. 

Query evaluation is mainly performed in the community overlay. In a commu-
nity overlay, peers are connected to those sharing similar semantic interests. As a 
result, the query propagation tends to first reach those that are more likely to  
possess the data being searched for. This semantic locality property enables the 
community overlay to answer most queries originated from the local community. 
Unlike DHTs, community overlay does not specify any requirements for the query 
format, hence is able to handle any arbitrary types of complex queries.  For the 
above reasons, a large portion of complex queries can be resolved inside the local 
community. However, it is still possible that a small portion of queries cannot be 
answered within the community overlays a peer belongs to, even if the peer may 
belong to multiple communities. Peers may have more interests which cannot be 
covered by the community overlays they reside. In this case, the index maintained 
by the directory overlay can be consulted for hints about where to forward the 
query for a second try.  

The directory overlay is built on top of DHT protocols. It provides a high-level 
directory service for the system by indexing abstract ontology skeletons.  The di-
rectory overlay has two main functionalities: (1) It facilitates the construction of 
community overlay. (2) It resolves queries not covered by the community overlay. 
Unlike community overlay, directory overlay does not give exact answers of a 
particular query; instead, it locates all peers possessing semantic keywords of the 
query. Then the query will be broadcasted to all peers related to the keywords for 
further evaluation. However, a keyword may have multiple meanings, not all of 
these meanings match the requestor’s intention. Simply forwarding the query to all 
peers containing the keywords is not accurate and consumes lots of unnecessary 
network bandwidth.  

The directory overlay employs peers’ recommendation and feedback to solve 
the aforementioned semantic ambiguity problem. After receiving results from the 
directory overlay, the requestor first checks the validity of the results. Then it re-
ports its findings back to the directory overlay nodes. The feedback will benefit 
future requesters with similar interests.  

A physical node may be involved in both of these two overlays. Community 
overlay and directory overlay benefit from each other: directory overlay facilitate 
the construction of community overlay, while feedback from communities im-
proves the search precision of directory overlay. Working together, these two 
overlays improve the search efficiency and accuracy of the system.   

3   Community Overlay 

The construction of the community is a topology adaptation process, i.e., to  
make the system’s dynamic topology match the semantic clustering of peers. The 
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community topology enables queries to be quickly propagated among relevant peers. 
In addition, this topology allows semantically related nodes to establish ontology 
mappings.  

3.1   Semantic Similarity 

To find semantically similar neighbours, peers should be able to measure semantic 
similarity between each other. There has been extensive research [17 - 19] focus-
ing on measuring the semantic similarity between two objects in the field of in-
formation retrieval and information integration. However, their methods are very 
comprehensive and computationally intensive. In this paper, we propose a light-
weight method to compute the semantic similarity between two nodes.  

Our system supports semantic web data represented as OWL ontology. OWL 
ontology can be divided into two parts: the terminological box (TBox) and the  
assertion box (ABox) as defined in the description logic terminology [16]. TBox 
ontology defines the high-level concepts and their relationships. It is a good ab-
straction of the ontology’s semantics and structure. Therefore, we use a node’s 
TBox ontology to represent its semantic interest. In particular, we use keywords of 
a node’s TBox ontology as its ontology summary. However, a semantic meaning 
may be represented by different keywords in different ontologies, while it is also 
possible that the same keyword in different ontologies means totally different 
things. Ontology comparison based on TBox keywords may not yield satisfying 
results. In order to solve this problem, we extend each concept with its semantic 
meanings in WordNet [22]. We use two most important relationships in WordNet 
– synonyms and hypernym – to expand concepts. In this way, semantically related 
concepts would have overlaps.  

After extension, a node’s ontology summary set may get a number of unrelated 
words, because each concept may have many senses (meanings), but not all of 
them are related to the ontology context. A problem causing the ambiguity of con-
cepts is that the extension does not make use of any relations in the ontology, 
which are important clues to infer the semantic meanings of concepts. To further 
refine the semantic meaning of a particular concept, we utilize relations between 
the concepts in an ontology to remove unrelated senses from the summary set. 
Since the dominant semantic relation in an ontology is the subsumption relation, 
we use the subsumption relation and the sense disambiguation information pro-
vided by WordNet to refine the summary. It is based on a principle that a con-
cept’s semantic meaning should be consistent with its super-class’s meaning. We 
use this principle to remove those inconsistent meanings. For every concept in an 
ontology, we check each of its senses; if a sense’s hypernym has overlap with this 
concept’s parent’s senses, then we keep this sense and the overlapped parent’s 
sense to the ontology summary set. Otherwise, they are removed from the set. In 
this way we can refine the summary and reduce imprecision.  

To compare two ontologies, we define an ontology similarity function based  
on the refined ontology summary. The definition is based on Tversky’s “Ratio 
Model” [23] which is evaluated by set operations and is in agreement with an  
information-theoretic definition of similarity [24]. Assume A and B are two nodes, 



Improving Distributed Semantic Search 87
 

and their ontology summary are S(A) and S(B) respectively. The semantic similar-
ity between node A and node B is defined as: 

|)A(S)B(S||)B(S)A(S||)B(S)A(S|

|)B(S)A(S|
)B,A(sim

−+−+
=

βα∩
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In the above equations, “∩” denotes set intersection, “–” is set difference, while 
“| |” represents set cardinality, “α” and “β” are parameters that provide for differ-
ences in focus on the different components. The similarity sim, between A and B, 
is defined in terms of the semantic concepts common to A and B: S(A)∩S(B), the 
concepts that are distinctive to A: S(A)–S(B), and the features that are distinctive 
to B: S(B) – S(A).  Two nodes, node A and node B are said to be semantically re-
lated if their semantic similarity measure, sim(A,B), exceeds the user-defined simi-
larity threshold t (0<t≤1). 

3.2   Community Construction 

The construction of an ontology-based overlay is a process of finding semantically 
related neighbors. A node joins the network by connecting to one or more boot-
strapping neighbors. The bootstrapping neighbors try to recommend some other 
neighbors to this new node according to their semantic. If the bootstrapping 
neighbors do not have such recommendation information at hand, the new joining 
node will issue a neighbor-discovery query. The neighbor discovery query con-
tains the new node’s ontology summary compressed with a Bloom Filter [25]. It 
then uses strategies (such as [13-15]) to efficiently propagate the neighbour dis-
covery query over clusters. Nodes receiving the query compute its semantic simi-
larity with the new node based on the semantic summary. Semantically related 
nodes then return a positive reply to the new node. If there are not enough 
neighbors discovered within the hops limited by TTL, the new node will turn to 
the directory overlay for assistance. After the neighbor-discovery process, a new 
node is positioned to the right community. Inside the community overlay, nodes 
randomly connect with their neighbors. Queries looking for particular contents can 
be forwarded inside the community overlay using flooding- or random-walk- 
based simple forwarding algorithms. 

Because of the dynamic property of the large-scale network, and the evolution 
of nodes’ ontology property, neighbor discovery for a node is not once and for all, 
but rather the first-step of the topology adaptation scheme. Based on the query ex-
periences a node may add or delete neighbors accordingly. At the same time, it  
recommends new neighbors to its existing neighbors. As a result, the network to-
pology is reconfigured with respect to peers’ dynamic semantic properties, and 
peers with similar ontologies are always close to each other. 

4   Directory Overlay 

As a facilitator and complement of the community overlay, the directory overlay in-
dexes top-level semantic interests and unpopular semantic concepts. As mentioned, 
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OWL ontology can be divided into two parts: TBox and ABox. Similar to a database 
schema, a node’s TBox knowledge is more abstract, describing the node’s high-level 
concepts and their relationships. In contrast, ABox includes concrete data and rela-
tions, for example, the instances of classes defined in the TBox. Directory overlay 
indexes TBox and ABox ontology for different purpose: TBox indexing helps nodes 
locate communities, while ABox indexing assists nodes finding instances which 
cannot be quickly located in the community overlay. 

The directory overlay is constructed according to the mechanism of the corre-
sponding DHT overlay. We employ RDFPeer’s indexing method presented by M. 
Cai et al [9]. The basic idea is to divide RDF description into triples and then in-
dex the triples in a DHT overlay. We store each triple three times by applying a 
hash function to its subject, predicate, and object. In this way, a query providing 
partial information of a triple can be handled. Peers register their top semantic in-
terests in the form of TBox ontology through the insert(key,value)  operation in 
the directory overlay. The directory overlay node in charging of that key maintains 
a Least Recently Used (LRU) cache storing contact information of registered 
peers. A neighbor discovery query can get contacts of other peers interested in the 
same ontology through this directory overlay node. Then the new node can con-
nect with these contacts and join their community. At the same time, the new node 
registers to the directory overlay by adding itself to the cache of the indexing 
node. A node with multiple interests can register with multiple indexing nodes. 
The directory overlay also indexes unpopular ABox instances which cannot be 
quickly located inside the community. 

5   Semantic Query Evaluation 

The semantic community reduces the search time and decreases the network traf-
fic by minimizing the number of messages circulating between nodes. There are 
many strategies, such as [13-15] to effectively propagate queries in an unstruc-
tured P2P network. Popular data items are more likely to be located quickly since 
they have more replicas in the community, whereas an unpopular data item cannot 
be found unless a large number or all of the peers are searched. Also, queries for 
data in other semantic communities are unlikely to be solved inside the local 
community overlay. For these cases, nodes turn to the directory overlay to get  
assistance. 

Directory overlay indexes top semantic interests and unpopular instances, thus 
is able to give hints to queries which cannot be solved by the community overlay. 
A node can find interested community by lookup its interest in the directory over-
lay, then connects to all related nodes returned. For unpopular ABox instances, 
DHT indexing has the semantic ambiguity problem.  For example, it is difficult  
to figure out whether the search term palm is a company (company: palm), a tech-
nology (operating system: palm), or a product (PDA:palm). We solve the ambigu-
ity problem with community recommendation feedbacks.   
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Fig. 1 Example of a data entry stored in an index node 

To facilitate query refinement with community feedback, the indexing peers 
need to perform some additional tasks. Besides storing the ABox keywords, an in-
dexing peer is also responsible for maintaining clusters of peers related to each 
sense of the keyword. Figure 1 shows an example of a data entry stored in an in-
dexing peer. There are six peers related to the term, palm.  Initially when a node 
issues a query related to term palm trying to find information about a PDA, all six 
peers are returned to the requester as shown in Figure 1 (a). The requester will 
contact each of them, although only three of them (P1, P13, P2) are related to PDA. 
After the requester contacts all these six peers and evaluates their data, it returns 
its feedback (i.e., which peers are related) to the indexing peer. The indexing peer 
will link those related three peers with the requester’s community, as shown in 
Figure 1 (b). Next time, a requester from the same community will take advantage 
of this clustering and be given only the three related peers. In this way, the preci-
sion of the query evaluation is improved and the network traffic is reduced. 

6   Experiment 

As it is difficult to find representative real world ontology data, we have chosen to 
generate test data artificially. The algorithm starts with generating the ontology 
schema (TBox). Each schema includes the definition of a number of classes and 
properties. The classes and properties may form a multilevel hierarchy. Then the 
classes are instantiated by creating a number of individuals of the classes. To gen-
erate an RDF instance triple t, we first randomly choose an instance of a class C 
among the classes to be the subject: sub(t). A property p of C is chosen as the pre-
dicate pre(t), and a value from the range of p to be the object: obj(t). If the range 
of the selected property p are instances of a class C’, then obj(t) is a resource; oth-
erwise, it is a literal. The queries are generated by randomly replacing parts of the 
created triples with variables.  

The directory overlay is implemented as a Pastry [6] virtual network in Java. 
Each peer is assigned a 160-bit identifier, representing 80 digits (each digit uses 2 
bits) with base b=2. After the network topology has been established, nodes pub-
lish their TBox knowledge and some unpopular ABox data on the overlay net-
work. Then nodes are randomly picked to issue queries. Each experiment is run 
ten times with different random seeds, and the results are the average of these ten 
sets of results. 

We examine the system performance in three different aspects, namely scalabil-
ity, efficiency, and precision by executing the experiment in different network 
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configurations. The performance is measured using two Information Retrieval (IR) 
standards: recall and precision. Recall refers to completeness of retrieval of rele-
vant items, as defined below:  

||

||

cumentsrelevantDo

ocumentsretrievedDcumentsrelevantDo
recall

∩=  

Precision measures the purity of the search results, or how well a search avoids 
returning results that are not relevant. The “document” in the IR definition repre-
sents a resource in our experiment.   

||
||

ocumentsretrievedD

ocumentsretrievedDcumentsrelevantDo
precision

∩=  

First, we vary the number of nodes from 29 to 215 to test the scalability of the 
system. The results are listed in Figure 2. Our hybrid system gets higher recall in 
all these different sized networks. In addition, our recall decreases less with the 
increase in network size.  

 

Fig. 2 Recall rate vs. network size 

Figure 3 illustrates the system efficiency by showing the relationship between 
query recall rate and query TTL. With a small TTL, our system gets a higher re-
call rate, i.e., resolves queries faster. 

 

 

Fig. 3 Recall rate vs. TTL 

To testify the effect of community recommendation, we create a special experi-
mental scenario which uses a small-sized dictionary D to generate the ontology 
data. We randomly pick S words from D, representing polysemy or homonymy 
(words with multiple meanings); if these words appear in different communities, 
they represent different meanings. In this experiment, we count the number of 
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Fig. 4 Effect of recommendation 

nodes visited to find 30 results at different time period. As shown in Figure 4, with 
the time going, using community feedback may reduce the number of nodes to be 
explored. Because feedback from communities helps eliminating semantic ambigu-
ity of the directory overlay, queries are only forwarded to the most relevant nodes. 
Consequently, the precision of the search is increased. 

7   Conclusion 

The main contribution of this paper is to present an effective framework for query 
evaluation in a large-scale distributed network. Our system combines the struc-
tured and unstructured P2P topology to form a hybrid architecture. We organize 
nodes’ topology according to their semantic similarity, so that queries can be fo-
cused in semantically related regions only. For queries that cannot be effectively 
resolved in the semantic community, they can be sent to a structured directory 
overlay. Recommendations from users are cached for disambiguating future que-
ries. Simulation experiments demonstrate that this framework improves the scal-
ability, efficiency and precision of search in a large semantic heterogeneous  
network. 
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