
A Kernel-Based Semi-Naive Bayesian Classifier Using P-Trees1

Anne Denton and William Perrizo
Department of Computer Science,

North Dakota State University
Fargo, ND 58105-5164, USA

{anne.denton, william.perrizo}@ndsu.nodak.edu

Abstract1
A novel semi-naive Bayesian classifier is introduced that
is particularly suitable to data with many attributes. The
naive Bayesian classifier is taken as a starting point and
correlations are reduced through joining of highly
correlated attributes. Our technique differs from related
work in its use of kernel-functions that systematically
include continuous attributes rather than relying on
discretization as a preprocessing step. This retains
distance information within the attribute domains and
ensures that attributes are joined based on their correlation
for the particular values of the test sample. We implement
a kernel-based semi-naive Bayesian classifier using
P-Trees and demonstrate that it generally outperforms the
naive Bayesian classifier as well as a discrete semi-naïve
Bayesian classifier.

Keywords: Bayesian classifiers, Semi-naïve Bayes,
Scalable Algorithms, Correlations, Kernel Methods,
P-Trees.

1. INTRODUCTION

One of the main challenges in data mining is handling
data with many attributes. The volume of the space that is
spanned by all attributes grows exponentially with the
number of attributes, and the density of training points
decreases accordingly. This phenomenon is also termed
the curse of dimensionality [1]. Many current problems,
such as DNA sequence analysis, and text analysis suffer
from the problem (see "spam" data set from [2] discussed
below). A classifier that suffers relatively little from high
dimensionality is the naive Bayesian classifier. Other
classifiers, namely generalized additive models [4], have
been developed that make similar use of the predictive
power of large numbers of attributes and improve on the
naive Bayesian classifier. These classifiers require an
optimization procedure that is computationally
unacceptable in settings in which the training data changes
continuously, such as for sliding window approaches in
data streams, in which old data is discarded at the rate at
which new data arrives [5].

We introduce a lazy classifier that does not require a
training phase. Our classifier improves on the accuracy of

1 Patents are pending on the P-tree technology. This work
is partially supported by GSA Grant ACT#: K96130308.

the Naive Bayesian classifier by treating strongly
correlated attributes as one. Approaches that aim at
improving on the validity of the naive assumption through
joining of attributes are commonly referred to as semi-
naive Bayesian classifiers [6-8]. Kononenko originally
proposed this idea [6] and Pazzani [7], more recently,
evaluated Cartesian product attributes in a wrapper
approach. In previous work continuous attributes were
intervalized as a preprocessing step, significantly limiting
the usefulness of the classifier for continuous data. Other
classifiers that improve on the naive Bayesian classifier
include Bayesian network and augmented Bayesian
classifiers [9-11]. These classifiers commonly assume
that correlations are determined for attributes as a whole,
but generalizations that consider specific instances are
also discussed [9]. They do, however, all discretize
continuous attributes, and thereby lose distance
information within attributes.

Our approach is founded on a general definition of
the naive Bayesian classifier that involves kernel density
estimators to compute probabilities [4]. We introduce a
kernel-based correlation function and join attributes when
the value of the correlation function at the location of the
test sample exceeds a predefined threshold. No
information is lost in the joining process. The benefits of
a kernel-based definition of density estimators are thereby
fully extended to the elimination of correlations. In
contrast to most other techniques attributes are only joined
if their values are correlated at the location of the test
sample. An example of the impact of a local correlation
definition could be the classification of e-mail messages
based on author age and message length. These two
attributes are probably highly correlated if the author is a
young child, i.e. they should be joined if age and message
length of the test sample are very small. For other age
groups there is probably little basis for considering those
attributes combined. Evaluation of kernel functions
requires the fast computation of counts, i.e. of the number
of records that satisfy a given condition. We use
compressed, bit-column-oriented data structures, namely
P-Trees to represent the data [12-16].

2. NAIVE AND SEMI-NAIVE BAYESIAN
CLASSIFIER USING KERNEL DENSITY
ESTIMATION

Bayes' theorem for a constant prior distribution can be
stated as follows. Given a class label C with m classes c1,

c2, ..., cm and an attribute vector x of all other attributes,
the conditional probability of class label ci can be
expressed as follows

)(
)()|(

)|(
x

x
x

P
cCPcCP

cCP ii
i

==
== (1)

P(C = ci) is the probability of class label ci and can be
estimated from the data directly. We use a representation
that is favored by the statistics community and that is
based on one-dimensional kernel density estimates as
discussed in [4].

The conditional probability P(x | C = ci) can be written
as a kernel density estimate for class ci

)()|(xx ii fcCP == with ∑
=

=
N

t
ti

i
i K

N
f

1

),(
1

)(xxx (2)

where xt are training points, Ki(x, xt) is a kernel function
and Ni is the number of training points with class label ci.
N is the total number of training points. The naive
Bayesian model assumes that for a given class the
probabilities for individual attributes are independent

∏
=

===
M

k
iki cCxPcCP

1

)|()|(x (3)

where xk is the kth attribute of a total of M attributes. The
conditional probability P(xk|C=ci) can, for categorical
attributes, simply be derived from the sample proportions.
For numerical attributes several alternatives exist. We use
a one-dimensional kernel density estimate that comes
naturally from (2)

∏ ∑∏
= ==







==

M

k

N

t

k
t

kk
i

i

M

k

kk
ii xxK

N
xff

1 1

)()()(

1

)()(),(
1

)()(x (4)

where the one-dimensional Gaussian kernel function is
given by

][
2

)(
exp

2

1
),(2

2)()(
)()()(

i
k

k
t

k

k

k
t

kk
Gaussi cC

xx
xxK =




 −
−=

σσπ
 (5)

with σk selected for good over all prediction accuracy. We
chose σk as half of the the standard deviation of attribute
k. Categorical attributes can be discussed within the same
framework. The kernel function for categorical attributes
is

]][[),()()()()()(
i

k
t

kk
t

kk
Cati cCxxxxK === (6)

where [π] indicates that the term is 1 if the predicate π is
true and 0 if it is false. We use this notation throughout
the paper.

2.1. Correlation function of attributes

We will now go beyond the naive Bayesian
approximation by joining attributes if they are highly
correlated. Attributes are considered highly correlated if
the product assumption in (3) can be shown to be a poor
approximation.

The validity of the product assumption can be verified
for any two attributes a and b individually by calculating
the following correlation function

1
),(

),(
),(

, 1

)()()(

1 ,

)()()(

−=

∏∑

∑ ∏

= =

= =

bak

N

t

k
t

kk

N

t bak

k
t

kk

xxK

xxKN
baCorr (7)

where the kernel function is a Gaussian function (5) for
continuous data and (6) for categorical data. If the
product assumption is shown to be poor, i.e., if the
correlation function (7) exceeds a threshold, typically
0.05-1, then the two attributes will be considered together.

The kernel function for joined attributes is

() ∑ ∏
= =

=
N

t bak

k
t

kkb
t

a
t

baba xxKxxxxK
1 ,

)()()()()()()(),(),(,,, (8)

With this definition it is possible to work with joined
attributes in the same way as with the original attributes.
It is important to observe that the criterion for correlation
is a function of the attribute values. If attributes are
correlated over all but not for the value of a particular test
sample no join is performed.

2.2. P-Trees

The P-tree data structure was originally developed for
spatial data [10] but has been successfully applied in
many contexts [14,15] and is in describe in detail in those
publications. P-Trees store bit-columns of the data in
sequence to allow compression as well as the fast
evaluation of counts of records that satisfy a particular
condition. A tree-based structure replaces subtrees that
consist entirely of 0 values by a higher level "pure 0"
node, and subtrees that consist entirely of 1 values by
higher level "pure 1" nodes. The number of records that
satisfy a particular condition is now evaluated by a bit-
wise AND on the compressed bit-sequences. Figure 1
illustrates the storage of a table with 2 integer and one
Boolean attribute. The number of records with A1 = 12
(i.e. the bit sequence 1100) is evaluated as a bit-wise
AND of the two P-Trees corresponding to the higher
order bits of A1 and the complements of the two P-Trees
corresponding to the lower order bits. This AND
operation can be done very efficiently for the first half of
the data set, since the single high-level 0-bit already
indicates that the condition is not satisfied for any of the
records. This is the basis for a scaling better than O(N)
for such operations.

The efficiency of P-tree operations depends strongly
on the compression of the bit sequences, and thereby on
the ordering of rows. For data that shows inherent
continuity, such as spatial or multimedia data, such an
ordering can be easily constructed. If data shows no
natural continuity it may be beneficial to sort it. We sort
according to all highest order bits first. Figure 1 indicates
at the bottom the sequence in which bits are used for
sorting.

Figure 1: Storage of tables as hierarchically compressed
bit columns

2.3. HOBbit Distance

The nature of a P-tree-based data representation with
its bit-column structure has a strong impact on the kinds
of algorithms that will be efficient. P-Trees allow easy
evaluation of the number of data points in a neighborhood
that can be represented by a single bit pattern. The
HOBbit distance [12] has the desired property.
It is defined as








≠











≠



+

=
= ∞

=

)()(
)()(

0

)()(

)()(

for
22

1max

for0

),(

k
t

k
sj

k
t

j

k
s

j

k
t

k
s

k
t

k
sHOBbit

xxxxj

xx

xxd
 (9)

where)(k
sx and)(k

tx are the values of attribute k for points

xs and xt, and   denotes the floor function.

We would like to approximate functions that are
defined for Euclidean distances by the HOBbit distance.
The exponential HOBbit distance corresponds to the
average Euclidean distance of all values within a
neighborhood of a particular HOBbit distance







≠

=
=

−)()(1),(

)()(
)()(

)()(

2

0
),(

k
t

k
s

xxd

k
t

k
sk

t
k

sEH
xxfor

xxfor
xxd k

t
k

sHOBbit

 (10)

2.4. Algorithm

Our classification algorithm uses the background that
has been developed as follows. Based on the attribute

values of each test sample we evaluate kernel functions
for all attributes. For continuous attributes we evaluate
(5) and for categorical attributes (6) for all values of the
class labels. Note that these kernel functions only have to
be evaluated once for each attribute value and can be
reused as long as the training data is unchanged.

Kernel functions for pairs of attributes are then
evaluated to determine the correlation function (7). For
this purpose we use kernel functions that are independent
of the class label rather than doing the analysis for
different classes separately to make the solution
numerically more stable. Attributes are joined if the
correlation function exceeds a given threshold that is
commonly chosen to be in the range 0.05 to 1. Joining of
attributes consists in computing the joined kernel
functions (8) and using the result to replace the individual
kernel functions of the respective two attributes in (4).
Evaluation of kernel functions for continuous attributes
involves evaluating the number of data points within each
of the HOBbit ranges of the attribute(s). This is done
through AND operations on the P-Trees that correspond
to the respective highest order bits. The number of points
in each range is then weighted according to the value of
the Gaussian function (5) using the exponential HOBbit
distance (10) that corresponds to the given HOBbit range.

The products of kernel functions of single and
combined attributes (4) are evaluated for all class label
values. It can be seen from (2) that they correspond to the
probabilities P(x | C = ci). These probabilities are used in
(1) together with the total probabilities of class label
values P(C = ci) that are determined from the training set.
The probability of the unknown sample is constant for all
classes and does not have to be evaluated. The class label
with the highest probability P(x | C = ci) P(C = ci) is
chosen as prediction.

3. IMPLEMENTATION AND RESULTS

We implemented all algorithms in Java and evaluated
them on 4 data sets. Data sets were selected to have at
least 3000 data points and to contain continuous
attributes. Two thirds of the data were taken as training
set and one third as test set. Due to the consistently large
size of data sets cross-validation was considered
unnecessary. All experiments were done using the same
parameter values for all data sets.

3.1. Data Sets

Three of the data sets were obtained from the UCI
machine learning library [1] where full documentation on
the data sets is available:
• spam data set: word and letter frequencies are used to

classify e-mail as spam
• adult data set: census data is used to predict whether

income is greater $50000
• sick-euthyroid data set: medical data is used to

predict sickness from thyroid disease

An additional data set was taken from the spatial data
mining domain (crop data set). The RGB colors in the
photograph of a cornfield are used to predict the yield of
the field [17]. Class label is the first bit of the 8-bit yield
information, i.e. the class label is 1 if yield is higher than
128 for a given pixel.

No preprocessing of the data was done, but some
attributes, were identified as being logarithmic in nature,
and the logarithm was encoded in P-Trees. The following
attributes were chosen as logarithmic: "capital-gain" and
"capital-loss" of the adult data set, and all attributes of the
"spam" data set.

3.2. Results

We will now compare results of our semi-naive
algorithm with three more traditional implementations.
The traditional Naïve Bayesian algorithm uses a Gaussian
distribution function. The P-tree Naïve Bayesian
algorithm uses HOBbit-based kernel density estimation,
but does not check for correlations. The Discrete Semi-
Naïve Baysian algorithm does eliminate correlations but
discretizes continuous data as a preprocessing step.
Table 1 summarizes the results.

3.3. P-Tree Naive Bayesian Classifier

Before using the semi-naive Bayesian classifier we
will evaluate the performance of a simple naive Bayesian
classifier that uses kernel density estimates based on the
HOBbit distance. Table 1 shows that for three of the data
sets the P-tree naive Bayesian algorithm constitutes an
improvement over traditional naive Bayesian.

3.4. Semi-Naive Bayesian Classifier

The semi-naive Bayesian classifier was evaluated
using two parameter combinations.

0

1

2

3

4

5

6

7

8

9

spam crop adult sick-euthyroid

D
ec

re
as

e
in

 E
rr

or
 R

at
e

Figure 2: Decrease in error rate for the kernel-based
semi-naive Bayesian classifier compared with the P-tree
naive classifier in units of the standard error. Two
parameter combinations were used: (1) t = 0.3, anti-
correlations eliminated (left), (2) t = 0.05 only
correlations eliminated (right).

Figure 2 shows the decrease in error rate compared
with the P-tree naive Bayesian classifier, which is the

relevant comparison when evaluating the benefit of
combining attributes. It can be clearly seen that for the
chosen parameters accuracy is increased over the P-tree
naive Bayesian algorithm. Run (1) used a cut-off of
threshold t = 0.3 while run (2) used t = 0.05. Run (1)
eliminates not only correlations, i.e., attributes for which
Corr(a,b) > t but also anti-correlations, i.e., attributes for
which Corr(a,b) < -t. We then compared our approach
with the alternative strategy of discretizing continuous
attributes as a processing step. Figure 3 shows the
decrease in error rate of the kernel-based implementation
compared with discretizing attributes as a preprocessing
step. The improvement of accuracy for the kernel-based
representation is clearly evident.

0
5

10
15
20
25
30
35
40
45

spam crop adult sick-
euthyroid

D
ec

re
as

e
in

 E
rr

or
 R

at
e

Figure 3: Decrease in error rate for two parameter
combinations for the kernel-based semi-naive Bayesian
classifier compared with a semi-naive Bayesian classifier
using discretization in units of the standard error. See
Figure 2 for explanation of parameter combinations (1)
and (2).

3.5. Performance

It is important for data mining algorithms to be efficient
for large data sets. Figure 4 shows that the P-tree-based
semi-naive Bayesian algorithm shows a better scaling than
O(N) as a function of the training points. This scaling is
closely related to the P-tree storage concept that benefits
increasingly from compression for increasing data set size.

0

40

80

120

0 10000 20000 30000

Number of Training Points

Ti
m

e
pe

r
Te

st
 S

am
pl

e
in

M

ill
is

ec
on

ds

Measured
Execution
Time

Linear
Interpolation

Figure 4: Scaling of execution time as a function of
training set size

Table 1: Error Rates for all algorithms described in the text. (+/-) values indicate variance. See Figure 2 for explanation of
parameter combinations (1) and (2).

4. CONCLUSIONS

We have presented a semi-naive Bayesian algorithm
that treats continuous data through kernel density
estimates rather than discretization. We were able to
show that it increases accuracy for data sets from a wide
range of domains both from the UCI machine learning
repository as well as from an independent source. By
avoiding discretization our algorithm ensures that distance
information within numerical attributes will be
represented accurately and improvements in accuracy
could clearly be demonstrated. Categorical and
continuous data are thereby treated on an equally strong
footing, which is unusual since classification algorithms
tend to favor one or the other type of data. Our algorithm
is particularly valuable for the classification of data sets
with many attributes. It does not require training of a
classifier and is thereby suitable to such settings as data
streams. The implementation using P-Trees has an
efficient sub-linear scaling with respect to training set
size. We have thereby introduced a tool equally
interesting from a theoretical and a practical perspective.

References

[1] D. Hand, H. Mannila, P. Smyth, "Principles of Data
Mining", The MIT Press, Cambridge, Massachusetts,
2001.
[2] http://www.ics.uci.edu/mlearn/MLSummary.html
[3] P. Domingos, M. Pazzani, "Beyond Independence:
Conditions for the Optimality of the Simple Bayesian
Classifier", 13th International Conference on Machine
Learning, 105-112, 1996.
[4] T. Hastie, R. Tibshirani, and J. Friedman, "The
elements of statistical learning: data mining, inference,
and prediction", Springer-Verlag, New York, 2001.
[5] M. Datar, A. Gionis, P. Indyk, and R. Motwani,
"Maintaining Stream Statistics over sliding windows," in
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2002.
[6] I. Kononenko, "Semi-Naive Bayesian Classifier", In
Proceedings of the sixth European Working Session on
Learning, 206-219, 1991.

[7] M. Pazzani, "Constructive Induction of Cartesian
Product Attributes", Information, Statistics and Induction
in Science, Melbourne, Australia, 1996.
[8] Z. Zheng, G. Webb, K.-M. Ting, "Lazy Bayesian
Rules: A lazy semi-naive Bayesian learning technique
competitive to boosting decision trees", Proc. 16th Int.
Conf. on Machine Learning, 493-502, 1999.
[9] N. Friedman, D. Geiger, and M. Goldszmidt,
"Bayesian network classifiers", Machine Learning, 29,
131-163, 1997.
[10] E. J. Keogh and M. J. Pazzani, "Learning augmented
Bayesian classifiers: A comparison of distribution-based
and classification-based approaches", Uncertainty 99: The
Seventh International Workshop on Artificial Intelligence
and Statistics, Ft. Lauderdale, FL, USA, 1999.
[11] J. Cheng and R. Greiner, "Comparing Bayesian
network classifiers", in Proceedings of the 15th
Conference on Uncertainty in Artificial Intelligence
(UAI’99), 101-107, Morgan Kaufmann Publishers, August
1999.
[12] M. Khan, Q. Ding, W. Perrizo, "K-Nearest Neighbor
classification of spatial data streams using P-Trees",
PAKDD-2002, Taipei, Taiwan, May 2002.
[13] W. Perrizo, Q. Ding, A. Denton, K. Scott, Q. Ding,
M. Khan, "PINE - podium incremental neighbor evaluator
for spatial data using P-Trees", Symposium on Applied
Computing (SAC’03), Melbourne, Florida, USA, 2003.
[14] Q. Ding, W. Perrizo, Q. Ding, “On Mining Satellite
and other Remotely Sensed Images”, DMKD-2001, pp.
33-40, Santa Barbara, CA, 2001.
[15] W. Perrizo, W. Jockheck, A. Perera, D. Ren, W. Wu,
Y. Zhang, "Multimedia data mining using P-Trees",
Multimedia Data Mining Workshop, KDD, Sept. 2002.
[16] A. Perera, A. Denton, P. Kotala, W. Jockheck, W.
Valdivia Granda, W. Perrizo, "P-tree Classification of
Yeast Gene Deletion Data", SIGKDD Explorations, Dec.
2002.
[17]http://midas10.cs.ndsu.nodak.edu/data/images/data_se
t_94/
[18] R. Kohavi, G. John, "Wrappers for feature subset
selection", Artificial Intelligence, 1-2, 273-324, 1997.

 Traditional
Naïve Bayes (+/-)

P-Tree
Naïve
Bayes

(+/-)

Discrete
Semi-
Naïve
Bayes (1)

(+/-)

Discrete
Semi-
Naïve
Bayes (2)

(+/-)

Kernel
Semi-
Naïve
Bayes (1)

(+/-)

Kernel
Semi-
Naïve
Bayes (2)

(+/-)

spam 11.9 0.9 10.0 0.8 9.4 0.8 9.5 0.8 8.4 0.7 8.0 0.7
crop 21.6 0.2 22.0 0.2 28.8 0.2 28.5 0.2 20.7 0.2 21.0 0.2
adult 18.3 0.4 18.0 0.3 17.3 0.3 17.1 0.3 17.0 0.3 16.6 0.3
sick-euthyroid 15.2 1.2 5.9 0.7 11.4 1.0 8.8 1.0 4.2 0.6 4.6 0.7

