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Abstract1 
A novel semi-naive Bayesian classifier is introduced that 
is particularly suitable to data with many attributes.  The 
naive Bayesian classifier is taken as a starting point and 
correlations are reduced through joining of highly 
correlated attributes.  Our technique differs from related 
work in its use of kernel-functions that systematically 
include continuous attributes rather than relying on 
discretization as a preprocessing step.  This retains 
distance information within the attribute domains and 
ensures that attributes are joined based on their correlation 
for the particular values of the test sample.  We implement 
a kernel-based semi-naive Bayesian classifier using          
P-Trees and demonstrate that it generally outperforms the 
naive Bayesian classifier as well as a discrete semi-naïve 
Bayesian classifier. 

Keywords:  Bayesian classifiers, Semi-naïve Bayes, 
Scalable Algorithms, Correlations, Kernel Methods,       
P-Trees. 

1.  INTRODUCTION 

One of the main challenges in data mining is handling 
data with many attributes.  The volume of the space that is 
spanned by all attributes grows exponentially with the 
number of attributes, and the density of training points 
decreases accordingly.  This phenomenon is also termed 
the curse of dimensionality [1].  Many current problems, 
such as DNA sequence analysis, and text analysis suffer 
from the problem (see "spam" data set from [2] discussed 
below).  A classifier that suffers relatively little from high 
dimensionality is the naive Bayesian classifier.  Other 
classifiers, namely generalized additive models [4], have 
been developed that make similar use of the predictive 
power of large numbers of attributes and improve on the 
naive Bayesian classifier.  These classifiers require an 
optimization procedure that is computationally 
unacceptable in settings in which the training data changes 
continuously, such as for sliding window approaches in 
data streams, in which old data is discarded at the rate at 
which new data arrives [5].   

We introduce a lazy classifier that does not require a 
training phase.  Our classifier improves on the accuracy of 
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the Naive Bayesian classifier by treating strongly 
correlated attributes as one.  Approaches that aim at 
improving on the validity of the naive assumption through 
joining of attributes are commonly referred to as semi-
naive Bayesian classifiers [6-8].  Kononenko originally 
proposed this idea [6] and Pazzani [7], more recently, 
evaluated Cartesian product attributes in a wrapper 
approach.  In previous work continuous attributes were 
intervalized as a preprocessing step, significantly limiting 
the usefulness of the classifier for continuous data.  Other 
classifiers that improve on the naive Bayesian classifier 
include Bayesian network and augmented Bayesian 
classifiers [9-11].  These classifiers commonly assume 
that correlations are determined for attributes as a whole, 
but generalizations that consider specific instances are 
also discussed [9].  They do, however, all discretize 
continuous attributes, and thereby lose distance 
information within attributes. 

Our approach is founded on a general definition of 
the naive Bayesian classifier that involves kernel density 
estimators to compute probabilities [4].  We introduce a 
kernel-based correlation function and join attributes when 
the value of the correlation function at the location of the 
test sample exceeds a predefined threshold.  No 
information is lost in the joining process.  The benefits of 
a kernel-based definition of density estimators are thereby 
fully extended to the elimination of correlations.  In 
contrast to most other techniques attributes are only joined 
if their values are correlated at the location of the test 
sample.  An example of the impact of a local correlation 
definition could be the classification of e-mail messages 
based on author age and message length.  These two 
attributes are probably highly correlated if the author is a 
young child, i.e. they should be joined if age and message 
length of the test sample are very small.  For other age 
groups there is probably little basis for considering those 
attributes combined.  Evaluation of kernel functions 
requires the fast computation of counts, i.e. of the number 
of records that satisfy a given condition.  We use 
compressed, bit-column-oriented data structures, namely 
P-Trees to represent the data [12-16].   

2.  NAIVE AND SEMI-NAIVE BAYESIAN 
CLASSIFIER USING KERNEL DENSITY 
ESTIMATION 

Bayes' theorem for a constant prior distribution can be 
stated as follows.  Given a class label C with m classes c1, 



 

c2, ..., cm and an attribute vector x of all other attributes, 
the conditional probability of class label ci can be 
expressed as follows 
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P(C = ci) is the probability of class label ci and can be 
estimated from the data directly.  We use a representation 
that is favored by the statistics community and that is 
based on one-dimensional kernel density estimates as 
discussed in [4].  

The conditional probability P(x | C = ci) can be written 
as a kernel density estimate for class ci 
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where xt are training points, Ki(x, xt) is a kernel function 
and Ni is the number of training points with class label ci.  
N is the total number of training points.  The naive 
Bayesian model assumes that for a given class the 
probabilities for individual attributes are independent 
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where xk is the kth attribute of a total of M attributes.  The 
conditional probability P(xk|C=ci) can, for categorical 
attributes, simply be derived from the sample proportions.  
For numerical attributes several alternatives exist.  We use 
a one-dimensional kernel density estimate that comes 
naturally from (2) 
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where the one-dimensional Gaussian kernel function is 
given by 
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with σk selected for good over all prediction accuracy. We 
chose σk as half of the the standard deviation of attribute 
k.  Categorical attributes can be discussed within the same 
framework.  The kernel function for categorical attributes 
is 
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where [π] indicates that the term is 1 if the predicate π is 
true and 0 if it is false. We use this notation throughout 
the paper.    

 

2.1.  Correlation function of attributes 

We will now go beyond the naive Bayesian 
approximation by joining attributes if they are highly 
correlated.  Attributes are considered highly correlated if 
the product assumption in (3) can be shown to be a poor 
approximation.   

The validity of the product assumption can be verified 
for any two attributes a and b individually by calculating 
the following correlation function 
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where the kernel function is a Gaussian function (5) for 
continuous data and (6) for categorical data.  If the 
product assumption is shown to be poor, i.e., if the 
correlation function (7) exceeds a threshold, typically 
0.05-1, then the two attributes will be considered together.   

The kernel function for joined attributes is  
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With this definition it is possible to work with joined 
attributes in the same way as with the original attributes.  
It is important to observe that the criterion for correlation 
is a function of the attribute values.  If attributes are 
correlated over all but not for the value of a particular test 
sample no join is performed.   

2.2.  P-Trees 

The P-tree data structure was originally developed for 
spatial data [10] but has been successfully applied in 
many contexts [14,15] and is in describe in detail in those 
publications.  P-Trees store bit-columns of the data in 
sequence to allow compression as well as the fast 
evaluation of counts of records that satisfy a particular 
condition.  A tree-based structure replaces subtrees that 
consist entirely of 0 values by a higher level "pure 0" 
node, and subtrees that consist entirely of 1 values by 
higher level "pure 1" nodes.  The number of records that 
satisfy a particular condition is now evaluated by a bit-
wise AND on the compressed bit-sequences.  Figure 1 
illustrates the storage of a table with 2 integer and one 
Boolean attribute.  The number of records with A1 = 12 
(i.e. the bit sequence 1100) is evaluated as a bit-wise 
AND of the two P-Trees corresponding to the higher 
order bits of A1 and the complements of the two P-Trees 
corresponding to the lower order bits.  This AND 
operation can be done very efficiently for the first half of 
the data set, since the single high-level 0-bit already 
indicates that the condition is not satisfied for any of the 
records.  This is the basis for a scaling better than O(N) 
for such operations.  



 

The efficiency of P-tree operations depends strongly 
on the compression of the bit sequences, and thereby on 
the ordering of rows.  For data that shows inherent 
continuity, such as spatial or multimedia data, such an 
ordering can be easily constructed.  If data shows no 
natural continuity it may be beneficial to sort it.  We sort 
according to all highest order bits first.  Figure 1 indicates 
at the bottom the sequence in which bits are used for 
sorting.    

 

Figure 1:  Storage of tables as hierarchically compressed 
bit columns 

2.3.  HOBbit Distance 

The nature of a P-tree-based data representation with 
its bit-column structure has a strong impact on the kinds 
of algorithms that will be efficient.  P-Trees allow easy 
evaluation of the number of data points in a neighborhood 
that can be represented by a single bit pattern.  The 
HOBbit distance [12] has the desired property.   
It is defined as 
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where )(k
sx and )(k

tx are the values of attribute k for points 

xs and xt, and   denotes the floor function.   

We would like to approximate functions that are 
defined for Euclidean distances by the HOBbit distance.  
The exponential HOBbit distance corresponds to the 
average Euclidean distance of all values within a 
neighborhood of a particular HOBbit distance 
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2.4. Algorithm 

Our classification algorithm uses the background that 
has been developed as follows.  Based on the attribute 

values of each test sample we evaluate kernel functions 
for all attributes.  For continuous attributes we evaluate 
(5) and for categorical attributes (6) for all values of the 
class labels.  Note that these kernel functions only have to 
be evaluated once for each attribute value and can be 
reused as long as the training data is unchanged.   

Kernel functions for pairs of attributes are then 
evaluated to determine the correlation function (7).  For 
this purpose we use kernel functions that are independent 
of the class label rather than doing the analysis for 
different classes separately to make the solution 
numerically more stable.  Attributes are joined if the 
correlation function exceeds a given threshold that is 
commonly chosen to be in the range 0.05 to 1.  Joining of 
attributes consists in computing the joined kernel 
functions (8) and using the result to replace the individual 
kernel functions of the respective two attributes in (4).  
Evaluation of kernel functions for continuous attributes 
involves evaluating the number of data points within each 
of the HOBbit ranges of the attribute(s).  This is done 
through AND operations on the P-Trees that correspond 
to the respective highest order bits.  The number of points 
in each range is then weighted according to the value of 
the Gaussian function (5) using the exponential HOBbit 
distance (10) that corresponds to the given HOBbit range. 

The products of kernel functions of single and 
combined attributes (4) are evaluated for all class label 
values.  It can be seen from (2) that they correspond to the 
probabilities P(x | C = ci).  These probabilities are used in 
(1) together with the total probabilities of class label 
values P(C = ci) that are determined from the training set.  
The probability of the unknown sample is constant for all 
classes and does not have to be evaluated.  The class label 
with the highest probability  P(x | C = ci) P(C = ci) is 
chosen as prediction.   

3.  IMPLEMENTATION AND RESULTS 

We implemented all algorithms in Java and evaluated 
them on 4 data sets.  Data sets were selected to have at 
least 3000 data points and to contain continuous 
attributes.  Two thirds of the data were taken as training 
set and one third as test set.  Due to the consistently large 
size of data sets cross-validation was considered 
unnecessary.  All experiments were done using the same 
parameter values for all data sets. 

3.1.  Data Sets 

Three of the data sets were obtained from the UCI 
machine learning library [1] where full documentation on 
the data sets is available: 
• spam data set: word and letter frequencies are used to 

classify e-mail as spam 
• adult data set: census data is used to predict whether 

income is greater $50000  
• sick-euthyroid data set: medical data is used to 

predict sickness from thyroid disease 



 

An additional data set was taken from the spatial data 
mining domain (crop data set).  The RGB colors in the 
photograph of a cornfield are used to predict the yield of 
the field [17].  Class label is the first bit of the 8-bit yield 
information, i.e. the class label is 1 if yield is higher than 
128 for a given pixel.   

No preprocessing of the data was done, but some 
attributes, were identified as being logarithmic in nature, 
and the logarithm was encoded in P-Trees.  The following 
attributes were chosen as logarithmic: "capital-gain" and 
"capital-loss" of the adult data set, and all attributes of the 
"spam" data set. 

3.2.  Results 

We will now compare results of our semi-naive 
algorithm with three more traditional implementations.  
The traditional Naïve Bayesian algorithm uses a Gaussian 
distribution function.  The P-tree Naïve Bayesian 
algorithm uses HOBbit-based kernel density estimation, 
but does not check for correlations.  The Discrete Semi-
Naïve Baysian algorithm does eliminate correlations but 
discretizes continuous data as a preprocessing step.   
Table 1 summarizes the results. 

3.3.  P-Tree Naive Bayesian Classifier  

Before using the semi-naive Bayesian classifier we 
will evaluate the performance of a simple naive Bayesian 
classifier that uses kernel density estimates based on the 
HOBbit distance.  Table 1 shows that for three of the data 
sets the P-tree naive Bayesian algorithm constitutes an 
improvement over traditional naive Bayesian.  

3.4.  Semi-Naive Bayesian Classifier 

The semi-naive Bayesian classifier was evaluated 
using two parameter combinations.   
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Figure 2:  Decrease in error rate for the kernel-based 
semi-naive Bayesian classifier compared with the P-tree 
naive classifier in units of the standard error. Two 
parameter combinations were used: (1) t = 0.3, anti-
correlations eliminated (left), (2) t = 0.05 only 
correlations eliminated (right). 

Figure 2 shows the decrease in error rate compared 
with the P-tree naive Bayesian classifier, which is the 

relevant comparison when evaluating the benefit of 
combining attributes.  It can be clearly seen that for the 
chosen parameters accuracy is increased over the P-tree 
naive Bayesian algorithm.  Run (1) used a cut-off of 
threshold t = 0.3 while run (2) used t = 0.05.  Run (1) 
eliminates not only correlations, i.e., attributes for which 
Corr(a,b) > t but also anti-correlations, i.e., attributes for 
which Corr(a,b) < -t.  We then compared our approach 
with the alternative strategy of discretizing continuous 
attributes as a processing step.  Figure 3 shows the 
decrease in error rate of the kernel-based implementation 
compared with discretizing attributes as a preprocessing 
step. The improvement of accuracy for the kernel-based 
representation is clearly evident.   
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Figure 3:  Decrease in error rate for two parameter 
combinations for the kernel-based semi-naive Bayesian 
classifier compared with a semi-naive Bayesian classifier 
using discretization in units of the standard error.  See 
Figure 2 for explanation of parameter combinations (1) 
and (2). 

3.5. Performance 

It is important for data mining algorithms to be efficient 
for large data sets.  Figure 4 shows that the P-tree-based 
semi-naive Bayesian algorithm shows a better scaling than 
O(N) as a function of the training points.  This scaling is 
closely related to the P-tree storage concept that benefits 
increasingly from compression for increasing data set size. 
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Figure 4: Scaling of execution time as a function of 
training set size 



Table 1: Error Rates for all algorithms described in the text.  (+/-) values indicate variance.  See Figure 2 for explanation of 
parameter combinations (1) and (2). 

4.  CONCLUSIONS 

We have presented a semi-naive Bayesian algorithm 
that treats continuous data through kernel density 
estimates rather than discretization.  We were able to 
show that it increases accuracy for data sets from a wide 
range of domains both from the UCI machine learning 
repository as well as from an independent source.  By 
avoiding discretization our algorithm ensures that distance 
information within numerical attributes will be 
represented accurately and improvements in accuracy 
could clearly be demonstrated.  Categorical and 
continuous data are thereby treated on an equally strong 
footing, which is unusual since classification algorithms 
tend to favor one or the other type of data.  Our algorithm 
is particularly valuable for the classification of data sets 
with many attributes.  It does not require training of a 
classifier and is thereby suitable to such settings as data 
streams.  The implementation using P-Trees has an 
efficient sub-linear scaling with respect to training set 
size.  We have thereby introduced a tool equally 
interesting from a theoretical and a practical perspective. 
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 Traditional 
Naïve Bayes (+/-) 

P-Tree 
Naïve 
Bayes 

(+/-) 

Discrete 
Semi-
Naïve 
Bayes (1) 

(+/-) 

Discrete 
Semi-
Naïve 
Bayes (2) 

(+/-) 

Kernel 
Semi-
Naïve 
Bayes (1) 

(+/-) 

Kernel 
Semi-
Naïve 
Bayes (2) 

(+/-) 

spam 11.9 0.9 10.0 0.8 9.4 0.8 9.5 0.8 8.4 0.7 8.0 0.7 
crop 21.6 0.2 22.0 0.2 28.8 0.2 28.5 0.2 20.7 0.2 21.0 0.2 
adult 18.3 0.4 18.0 0.3 17.3 0.3 17.1 0.3 17.0 0.3 16.6 0.3 
sick-euthyroid 15.2 1.2 5.9 0.7 11.4 1.0 8.8 1.0 4.2 0.6 4.6 0.7 


