Exploring worlds of more than three dimensions

Anne Denton Computer Science, NDSU

What are dimensions?

- For the purpose of this workshop
 - Number of independent attributes (coordinates)
- What does that have to do with 2-dim planes and 3-dim spaces?
 - In the plane, we need two coordinates to specify a location

In a 3-dím space we need three coordínates

Example: 2-dím Maze Game

Objective
Get from bottom left to top right
Maximum number of steps: 2

Acceptable Moves

- Move one or two steps
- You may go around corners
- No díagonals
- Fancy name:
 - Manhattan
 dístance

Solution to 2-dim Maze

Maze in numbers

Interpretation

What could those numbers be?
Geographic location
Age and height of a person
Components of color (next)
Do not have to be what most people think when you say "dimension"

Colors

 All colors can be created by mixing 3 components Here colored lights are added

Color Interpretation

- Two basic colors
 - x-coordinate is red
 - y-coordínate is green
- Maze challenge
 - How do you find a sequence of colors with adjacent colors being "not too different"?
 - Mathematically both problems equivalent

Maze using Colors

Shortest Path for 2-dím Colors

3-dím Example

 Numbers
 represent additional dímension
 Now 3

steps are allowed

Acceptable Moves in 3-dím As before

- Dístance has to be smaller or equal than maximum (3)
- New
 Dífference in 3rd dímension counts as one step

Solution to 3-dím Maze

 Note how solution differs although x and y coordinates are same

3-dím Maze in Numbers

3-d Maze using Color

Shortest Path for Colors

How about 4 Dimensions?

 The two numbers are independent
 Now we allow 4 steps

Acceptable Moves in 4-dim

Now both additional dimensions are added to the distance

 Maximum distance is now 4 steps

Solution to 4-dim Maze

 Note how x and y become increasingly unimportant for the overall path

4-dím Maze in Numbers

Can we do 4-dím Colors?

- Unfortunately human eyes only have three different receptors
 - Red, Green, and Blue
- So we can only represent 3 independent pieces of information
- Any idea how we could visualize 4 dimensions?

Combining Color and Position

 How many colors do we need to represent 4 dímensions?

Combining Color and Position

Note how the color helps you find the path

Color and Position

- We have seen that x, y, red, and green can be used to visualize a 4-dim problem
- How many dimensions would you get by combining x and y with complete color information?
- How about complete spacial and color information?

How Common are Problems in Four and More Dimensions?

- I commonly work with 10-10,000 dimensions
- Any information that is known about a person or a thing could be another dimension
 - Some of them are yes/no types of information
 - Similar ideas and techniques
- How many things are known about you?

Suggestions Please

 What do you think is easy in high dimensions?

What is difficult?

Some Easy Things

- Doing distance calculations
 - Not just Manhattan distance
 - Standard Euclidean distance can also easily be generalized to higher dimensions
- Calculating averages, etc.
- Many mathematical algorithms don't depend much on dimensionality

So is everything easy?

- Visualization is difficult
 - We saw that anything with more than 2 or 3 dimensions becomes difficult to visualize
- Some problems that one may not think of
 - In high dimensions there are few points very close and few points very far
 - Most are somewhere in-between

Example Application

- Understanding data
 - Grouping objects
 - Predicting something about objects
 - Finding patterns in data
- Also called: Data mining

Other Applications?

- Physical sciences / Engineering
 - Velocity components may be considered as dímensions
 - Or every position and velocity of every particle in a system may be a dimension!
- Does not end there
 - Physicists sometimes even consider infinitely many dimensions!

Summary

Working with many dimensions is not so different from working with two or three
There are some exciting additional challenges
You showed that you can do it!