Geographic Information Systems

Anne Denton

Department of Computer Science North Dakota State University

Anne Denton Geographic Information Systems

O > <
 O >

< ∃⇒

Outline

- Introduction
- Geographic information systems

Properties of geographic data

- Raster and vector data
- Georeferencing and projections

3) J

Introduction Geographic information systems

Table of Contents

Geographic information system

Properties of geographic data
 Raster and vector data
 Georeferencing and projections

< ∃→

History

- Roots in map making, which goes back hundreds of years to Henry the Navigator and earlier
- Quantitative geospatial analysis since 1970s
 - Tobler's First Law of Geography: Everything is related to everything else, but near things are more related than distant things
 - http://en.wikipedia.org/wiki/Waldo_R._Tobler
- Geographic information systems
 - First GIS was Canada Geographic Information System
 - Designed in the mid-60s as a computerized map measuring system
 - Many technical developments during the cold war, including GPS (Global Positioning System)
 - Modern history begins in the early 80s

> < E >

Special aspects of geographic data

- Almost everything that happens, happens somewhere
- Scale or level of geographic detail is an essential problem of any GIS project
 - Local
 - Regional
 - National
- Impact on society
 - Some uses ethically problematic: Surveillance
 - Tend to emphasize homogeneity
 - Can also favor population: Impact on Arab uprisings of the early 2010s

(a)

Introduction Geographic information systems

Table of Contents

• Geographic information systems

Properties of geographic data
 Raster and vector data
 Georeferencing and projections

< ∃→

< 口 > < 同

History of geographic information systems

ESRI's ArcGIS

- ESRI stands for Environmental Systems Research Institute
- ESRI history: Company founded 1969 to work on GIS projects
- ArcInfo launched 1981 as first commercial GIS software system
- Open source geographic information systems
 - GRASS GIS
 - QGIS
- Applications for non-experts
 - Google Maps
 - Google Earth

Services of geographic information systems

- Allow working on different scales
- Offer transformations between
 - Raster and vector data
 - Reference systems and projections
- Offer spatial operations like
 - Intersections between areas
 - Distances
 - Spatial joins, e.g., relating points to the region they are in

→

Geospatial indexes

- Data inherently two-dimensional
- 1-dimensional indexes, like B⁺ trees not useful
- R-trees use the same block splitting ideas as B⁺ trees
 - https://en.wikipedia.org/wiki/R-tree
- Other concepts for two-dimensional trees exist

Question 1 (multiple answers can be correct)

B⁺ trees are not suitable as geospatial indexes because geospatial data

- Are normally stored in RAM
- 2 Are typically much larger than other relational data
- Are inherently two-dimensional

< ∃⇒

Table of Contents

1) Geographic data

- Introduction
- Geographic information systems

Properties of geographic data

- Raster and vector data
- Georeferencing and projections

< ∃→

Raster and vector data

Differ in terms of

- Storage requirements
- Possibility to change resolution
- Representation of n-dimensional objects
- Ease of combining multiple layers
- Geographic Information systems can translate between them
- Information is lost when going from vector to raster format
- Important distinction in graphics as well

Raster Data

- Array of rectangular cells
- Image data typically raster data (Landsat: cells have 30m side length)
- Require projection information!
- All detail in cell is lost
- Combination of imagery with different projections (or possibly lens distortions) very challenging
- Areas represented by collection of raster points
- File size depends on resolution
- Resolution fixed

Vector Data

- Straight lines connect points (vertices)
- Often a natural representation for objects (raster representation would involve approximations)
- Areas represented by polygons
- Polyline used for 1-dimensional objects, like rivers or roads
- File size depends on density of vertices
- Resolution variable

→

Question 2 (multiple answers can be correct)

A satellite image is an example of

- Raster data
- Vector data

イロト イポト イヨト イヨト

ъ

Question 3 (multiple answers can be correct)

A polyline that describes the perimeter of an agricultural field is an example of

- Raster data
- Vector data

O > <
 O >

► < ∃ ►</p>

Table of Contents

Geographic data

- Introduction
- Geographic information systems

Properties of geographic data

- Raster and vector data
- Georeferencing and projections

< ∃→

Georeferencing

- Any spatial coordinate requires a reference system
- Some common systems
 - Latitude / Longitude used in WGS 84 and NAD 83 (we'll get back to that)
 - Postal address: Work well for dwellings and offices but not natural features
 - IP address (Does not work when users use proxy servers)
 - Linear reference systems along a defined path on a network (may not be straight), e.g., highway miles, river miles
 - Cadaster: Map of land ownership in an area (for tax and ownership purposes), could be used for mapping but often codes are obscure

(a)

Question 4 (multiple answers can be correct)

Which of the following are coordinates in a spatial reference system in some context

- Red River, Mile 458
- 1340 Administration Ave, Fargo, ND 58105
- The IP address 127.0.0.1 (this one is admittedly a trick question; if you don't know the address, please look it up)
- 46.8772°N, 96.7898°W

Latitude and Longitude

- Latitude defined based on equator
- Longitude based on Prime Meridian which goes through the Royal Observatory in Greenwich, near London, England
- World Geodetic System 84 (WGS 84)
 - Global standard
 - Used by Global Positioning System (GPS)
- North American Datum 83 (NAD 83)
 - Used by many surveying efforts (e.g. elevation modeling, landcover maps)
- Geographic information systems can translate between them

(a)

Question 5 (multiple answers can be correct)

Where approximately is the point of zero latitude and longitude $(0^{\circ}N, 0^{\circ}E)$

- In Fargo, we are pretty close to that
- It was defined to be the Royal Observatory in Greenwich near London, England
- Somewhere West of Africa
- Where the date-line intersects with the equator

→ < ∃ →</p>

Projections

- Projections of the Earth's sphere to any 2-dimensional surface all have some problems
 - Can preserve angles: Conformal property (scales of projection in x- and y- direction always equal)
 - Can preserve area: Equal area property (areas on the map are always in the same proportion as areas measured on earth's surface)
- Mercator projection
 - Preserves points of the compass
 - Used in navigation of ships
 - Distorts areas far from the equator (gigantic Greenland)
 - Allow using 1 minute latitude (i.e., 1/60 of a degree) as distance measure: nautical mile (1852m or 1.15 miles)

(4回) (4回) (4回)

Question 6 (multiple answers can be correct)

In navigation of ships, distances are typically measured in nautical miles. Is the following definition of a nautical mile plausible? One nautical mile is defined as one minute, i.e. 1/60 of a degree

- Latitude
- 2 Longitude

Universal Transverse Mercator projection

- Used by Landsat (main satellite system for remote sensing)
- Most commonly used in Geographic Information Systems
- Same principle as for Mercator projection but cylinder wrapped around the poles
- 60 zones, each zone 6 degrees
- Unit of length: 1m
- Very high accuracy: Distortions < 0.05%
- Non-trivial to use: Both parallels and meridians are curved, and maps do not fit together across zone boundaries
- UTM coordinates: Zone number (we are 14N), a six-digit integer (0 to 1 million meters per zone), and a seven-digit integer (0 to 10 million meters from equator to North Pole)
- http://en.wikipedia.org/wiki/Universal_ Transverse_Mercator_coordinate_system

Question 7 (multiple answers can be correct)

UTM (Universal Transverse Mercator) is used in Geographic Information Systems, instead of the conventional Mercator projection because

- It allows measuring distances more accurately
- Areas are less distorted
- A single map suffices for representing all of Earth's surface
- UTM coordinates are used in Google Maps and other popular applications