
Concepts of index structures
Multi-level indexes

Index Structures

Anne Denton

Department of Computer Science
North Dakota State University

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Outline

1 Concepts of index structures
Properties of indexes
Types of indexes

2 Multi-level indexes
Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Table of Contents

1 Concepts of index structures
Properties of indexes
Types of indexes

2 Multi-level indexes
Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Are considered “access methods"
Allow fast access to records based on “indexing field"
Any field can be used as indexing field
Not limited to primary key, but primary key is typically indexed

Important for constraint checking
Used for some join queries (especially when few records are
returned)

Multiple indexes possible for one table (file)

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Single-level vs. multi-level indexes

Single level index
Not common in practice
Similar to index of a book
Index is an ordered file that maps indexing field value to address
First field same type as indexing field
Second field: block or record pointer

Multi-level index
Typical implementation
Different tree structures conceivable, but B+ trees used in
overwhelming majority of implementations
Binary trees not normally used due to large number of levels
and inefficient use of data read from disk

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Fraction of indexed records

Dense index
One index entry corresponding to each record in the file
Necessary when the remaining records cannot be inferred
Example uses

Heap files
Attributes other than the search field in sorted or hash files

Sparse index
Only some records in the file have corresponding index entries
Used when the position of some records can be inferred from
others
Example uses

Sorted files
Attribute used for searching is not a key

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Table of Contents

1 Concepts of index structures
Properties of indexes
Types of indexes

2 Multi-level indexes
Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Primary Index

Index used for an physically ordered file
File ordered according to the value of a key

Key: Field that uniquely identifies record, i.e., one record per
key value

Indexing field has same data type as ordering field of file
Can be sparse: Only pointer to first record in block necessary
(anchor record)
Typical use

By default the primary key of a relation will be given a primary
index
A file may also be sorted based on an alternate key
An index on an alternate key that is used for sorting would still
be a primary index

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Question 1
Consider the following sorted data that extends over multiple blocks

3
5
7
12
14

How many index entries are needed?
1 Two, one for each block anchor, 3 and 12
2 Five, one for each of the search key values, 3, 5, 7, 12, and 14

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Question 2
Consider the following sorted data that extends over multiple blocks

7
14
5
3
12

How many index entries are needed?
1 Two, one for each block anchor, 7 and 3
2 Five, one for each of the search key values, 3, 5, 7, 12, and 14

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Clustered Index

Index used for a physically ordered file that is not a key
One entry in the index file for each distinct value of the indexing
field (not for each record)
Sparse index

Typical uses
Attribute that is normally searched for but is not unique
Not the default choice but may come out of database tuning

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Secondary Index

Index used for a non-ordering field
File could be a heap file
File could be sorted according to a different ordering field

Multiple secondary indexes possible
Must be dense (each record must be represented)
Search time is longer than for primary index
Can be viewed as logical sorting of the file
Representing field that is not a key field

Option 1: One entry for each record
Option 2: List of pointers to all records with the given indexing
field value
Option 3: Index entry represents a block of record pointers or
linked list of blocks

Compare to index in a book

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Question 3
How many primary indexes can there be on a file

1 One
2 As many as there are attributes

Question 4
How many clustered indexes can there be on a file

1 One
2 As many as there are attributes

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Question 5
How many secondary indexes can there be on a file

1 One
2 As many as there are attributes

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Properties of indexes
Types of indexes

Question 6 (Multiple answers may be correct)
Which of the following are good reasons for having a primary index
on a primary key

1 Fast checking if key constraint is satisfied upon insertion into
the table in question

2 Fast checking if referential integrity constraint is satisfied up
upon insertion into a table that defines a foreign key that
references the table in question

3 Fast join queries that return only a few records
4 Fast join queries that involve all or most records in the table
5 Fast “ORDER BY" queries by last name

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Table of Contents

1 Concepts of index structures
Properties of indexes
Types of indexes

2 Multi-level indexes
Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Multilevel Indexes

Single-level indexes not practical, since binary search not
efficient on disk
Binary trees not practical either

Number of levels of the order of log2(N) where N is number of
levels
Each block read from disk only used for very small node

Most practical solution: Use nodes that fill disk blocks

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 7 (Multiple answers may be correct)
Which of the following make binary trees unsuitable for indexing
records on disk?

1 Since each node only has two child node pointers, the number
of levels is large, which may mean many disk accesses

2 Listing elements in sequence requires a tree traversal that
involves many disk accesses

3 Binary trees are generally inefficient and have been
superseded by B+ Trees

4 The question is poorly phrased: Binary trees are suitable for
indexing records on disk

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Overview over Objectives

Make the most out of any disk access
Important because of slow disk access
Large block size (∼ 4K)

Allow fast retrieval in sequence of search key values
Important for returning ordered lists
Important for inequalities, e.g. “<" or “>")

Minimize the number of tree levels
Number of disk accesses in retrieval given by number of tree
levels that have to be read
Large fanout reduces number of tree levels

Avoid major reorganizations
Limit number of block reorganization upon insertion

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Optimizing use of each disk access

Disk access, for HDDs, takes about 6 orders of magnitude
more time than for RAM (i.e., a factor of about 1 million)
The typical disk block size is 4KB
Make the most out of any disk access

Choose node size to match block (page) size
The information in the node of a binary tree is in the 10s of
bytes, not in the thousands of bytes
Information about ∼ 100 child node pointers fits in one block

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Maximizing fanout

The number of levels in a tree is approximately logf N, where f
is the fanout, and N is the number of records that are being
indexed
E.g. for N = 106, the number of levels in a binary tree is greater
than 20, but for a fanout of 100, only 3 levels would be needed
Number of disk accesses in retrieval can be as large as
number of levels, i.e., reducing number of levels is critical for
fast access
Store as little information as possible in internal nodes (e.g., no
record pointers)

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 8
A multi-level index could be constructed to have internal nodes that
include

Search key values, child-node pointers, and record pointers for
each search key value
Search key values, child-node pointers, but no record pointers,
and instead have all record pointers at the leaf level

The first design, in comparison with the second, is bound to result
in a tree with

1 More levels
2 Fewer levels

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Avoiding sparsely filled nodes

Only create nodes by splitting overflowing existing nodes
Split from the bottom up, so that any split corresponds to an
insertion into a higher-level node
When parent node is full, split parent node
Upon deletion, merge adjacent nodes that are less than half
full

Alternative: Rebuild index occasionally

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 9 (Multiple answers may be correct)
Which of the following insertion strategies may result in nodes that
are less than half full for large-fanout trees?

1 Growing the tree by adding leaves, as is done for binary trees
2 Growing the tree splitting nodes from the leaf-level towards the

root node

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Fast retrieval in sequence of search key values

Needed for many queries
“ORDER BY" statement requires sorted output
Selection criteria that involve inequalities, e.g. “<" or “>"

Would require tree traversal in a binary tree
Solution

B+ Trees have all record pointers in leaf level, all leaf nodes at
same level, and pointers between nodes

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 10 (Multiple answers may be correct)
Which of the following types of trees allow retrieving data ordered
by the search key value without requiring a tree traversal

1 Binary trees
2 B+ Trees

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Avoid major reorganizations

Insert new search key values by locating node into which they
belong
When that node is full, split it
Do not reorganize any other nodes
Never leads to nodes that are less than half full, at least for
insertions only
Combining leaves during deletions more complicated

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Table of Contents

1 Concepts of index structures
Properties of indexes
Types of indexes

2 Multi-level indexes
Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

B+ Trees

B+ Trees are overwhelmingly used instead of binary trees when
disk access is involved
Even tables with hundreds of millions of records require no
more than 4-5 disk accesses

Fanout in the hundreds of child-node pointers
The number of blocks that require reorganization is never
larger than the number of levels in the tree

When a leaf node is split, splitting may propagate up in the tree
up to root node
Neighboring nodes not affected

They offer a logical sorting of the data
Note that while binary trees only have one type of node, B+

Trees distinguish internal and leaf nodes
B Trees used the same nodes for both, but were not as efficient

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Internal nodes

Each internal node has the following structure:

C1 K1 . . . Ki−1 Ci Ki . . . Kp−1 Cp

Where the Ci are child-node pointers and Ki are search key
values
Number of child-node pointers, p, determined based on block
(page) size and storage requirements for child-node pointers
and search key values
Notice that there are no record pointers in internal nodes
Requires searching to leaf level for each search key value

Overall beneficial because it reduces the number of levels
Also enables iterating through leaf level

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 11
Consider a B+ Tree in a database with

Page/block size: 4KB
Child-node pointer size: 8 bytes
Search key value size: 8 bytes

What will the fanout be?
1 4
2 16
3 258
4 1024

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Estimate of fanout of internal nodes

Maximum fanout is calculated based on page size of the
DBMS (which is typically chosen equal to the block size of the
operating system)
As order of magnitude estimate assume

Page/block size: 4KB
Child-node pointer size: 8 bytes
Search key value size: 8 bytes

Fanout: 256
This estimate is based on integer search keys
When the indexed data type is VARCHAR, the fanout can be
much smaller

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Leaf nodes

Each left node has the following structure:

R1 K1 . . . Ki−1 Ri Ki . . . Kq−1 Rq <Next>
Number of record pointers, q, may be different from the p of
child-node pointers
<Next> pointer allows iterating through leaf level
There are formats that integrate entire records into leaf node

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Table of Contents

1 Concepts of index structures
Properties of indexes
Types of indexes

2 Multi-level indexes
Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Empty B+ Tree

We use a small example for demo purposes
Initial empty node is a leaf node
Assume that value 8 is inserted

8

Arrow symbolizes record pointer

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Initial insertions

Initial insertions only result in internal reordering of node
Internal reordering is fast since it is done in memory
Assume that value 6 is inserted

86

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Node splitting

In this small example the next insertion triggers node splitting
Requires adding an internal node as root node
Search key value in root node has to be replicated in leaf level

Whether it is replicated in left or right node depends on definition
Whatever the definition is it has to be applied consistently

Assume that value 12 is inserted

86 12

8

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 12 (Multiple answers may be correct)
Assume that the next value to be added is 5. Which of the following
statements are correct?

1 No node splitting is necessary
2 A leaf node will have to be split
3 The root node will have to be split

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Further node splitting

Insertions start by locating appropriate node
Assume that the next inserted value is 5
5 is smaller or equal to 8 and is hence expected in left node
In this small example, the node is full and has to be split
The internal node can still accommodate an additional value
and does not have to be split

65 8

6

12

8

Notice <Next> pointer between leaf nodes

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 13 (Multiple answers may be correct)
Assume that the next value to be added is 23. Which of the
following statements are correct?

1 No node splitting is necessary
2 A leaf node will have to be split
3 The root node will have to be split

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Insertions without node splitting

In an actual B+ Tree, most insertions can be done without node
splitting
Assume that the next inserted value is 23
23 is greater than 8 and is inserted in the rightmost node

65 8

6

12

8

23

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 14 (Multiple answers may be correct)
Assume that the next value to be added is 15. Which of the
following statements are correct?

1 No node splitting is necessary
2 A leaf node will have to be split
3 The root node will have to be split

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Splitting of root node

Assume that the next inserted value is 15
15 is greater than 8 and belongs into the rightmost node
Node has to be split and so does the root node
Notice that 8 does not have to be replicated in an internal node

65 8

6

12 15 23

15

8

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Question 15
Which of the following statements is correct about B+ Trees?

1 Search key values are never replicated
2 The same search key value may occur in a leaf node and one

internal node
3 The same search key value may occur in a leaf node and

multiple internal nodes

Anne Denton Index Structures



Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

Visualization

The following visualization may help, but uses the convention
of taking the right child node pointer upon equality
https://www.cs.usfca.edu/~galles/
visualization/BPlusTree.html

Anne Denton Index Structures

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html


Concepts of index structures
Multi-level indexes

Objectives for multi-level indexes
Definition of B+ Trees
Insertion into a B+ Tree

B+ Tree limitations

B+s are use almost exclusively for indexing a single attribute or
a multiple attributes that form a hierarchy
To index multiple attributes use composite indexes / keys
Order matters for storage, since sorting starts with first attribute
For true multi-dimensional indexing check spatial indexes

No hierarchy between latitude and longitude
R trees, quad trees and others address this problem
Some (in particular R-trees) borrow ideas from B+ Trees

Anne Denton Index Structures


	Concepts of index structures
	Properties of indexes
	Types of indexes

	Multi-level indexes
	Objectives for multi-level indexes
	Definition of Bmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg+ Trees
	Insertion into a Bmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg+ Tree


