Functional Dependencies

Anne Denton

Department of Computer Science North Dakota State University

Anne Denton Functional Dependencies

O > <
 O >

< ∃→

- 1. Semantics and 2. Anomalies
- 3. Null values and 4. Spurious tuples

- Definition
- Inference rules

Anne Denton Functional Dependencies

3 x 3

Semantics and 2. Anomalies
 Null values and 4. Spurious tuples

Table of Contents

- 3. Null values and 4. Spurious tuples
- Functional Dependencies (FD)
 Definition
 - Inference rules

> < 3 >

A D > <
 A +
 A +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Semantics and 2. Anomalies
 Null values and 4. Spurious tuples

Informal guidelines for relational schemas

- In practice, people are often asked to work with existing databases
- The databases may have evolved over time and no longer satisfy design expectations
- Some potential problems can be identified using informal guidelines

イロト イポト イヨト イヨト

Guideline 1: Clear semantics of attributes

- Make sure that you can easily explain the meaning of attributes.
 - Example: If you create a table of orders that has an order id, and then a customer id and name of the customer who placed the order

... that is not very clear

- Normalization principles provide formal arguments against this
- Unclear semantics can signify problems that may not even be eliminated through normalization

イロト イポト イヨト イヨト

Semantics and 2. Anomalies
 Null values and 4. Spurious tuples

Guideline 2: Prevent anomalies

- Strange behavior or anomalies can indicated problems
 - Example: Take the below example of orders, and id and last name of the customer who placed it (primary key: oid)

Order

01001		
order_id	customer_id	customer_name
55	11	Smith
56	11	Smith
58	3	Miller
61	7	Smith

Brainstorming question

Think about what can go wrong with the below table

Order

order_id	customer_id	customer_name
55	11	Smith
56	11	Smith
58	3	Miller
61	7	Smith

ъ

Anomalies

Insertion anomaly 1: If you insert ('63','11','Smiht') the name is clearly inconsistent.

Insertion anomaly 2: We would not be able to insert customer id name information of a customer who has not order listed in the table Because order_id is primary key (null,17,'Butcher') cannot be inserted

Deletion anomaly: Consider what happens to the customer information if, e.g. their only order is cancelled We loose more information than we mean to.

Modification anomaly: Consider what happens if the customer changes his/her name? All tuples have to be updated.

< 3 >

Semantics and 2. Anomalies
 Null values and 4. Spurious tuples

Anomalies continued

- Try to make sure that no update anomalies can happen
- Applying normalization principle allows preventing most of them
- If anomalies cannot be prevented, note them clearly and enforce constraints through programs operating on the database

Table of Contents

Semantics and 2. Anomalies
 Null values and 4. Spurious tuples

Informal guidelines for relational schemas 1. Semantics and 2. Anomalies

- 3. Null values and 4. Spurious tuples
- Functional Dependencies (FD)
 Definition
 - Inference rules

< ∃⇒

1. Semantics and 2. Anomalies

3. Null values and 4. Spurious tuples

Guideline 3 : Avoid null values in attributes

Problems with null

- Waste of storage space
- Different possible meanings (not applicable, non-existent, etc.)
- Problems with aggregate functions
- Problems with join (inner join <=> outer join)

- 1. Semantics and 2. Anomalies
- 3. Null values and 4. Spurious tuples

→ < ∃ →</p>

Guideline 4: Prevent spurious tuples

• Imagine splitting the table Order into two tables, where customer_name in both tables is again the last name of the customer:

Order_Name

order_id	customer_name	Customer	
55	Smith	customer_id	customer_name
56	Smith	3	Miller
58	Miller	7	Smith
61	Smith	11	Smith

• Consider what happens upon joining both tables

Semantics and 2. Anomalies
 Null values and 4. Spurious tuples

Spurious tuples

• Joining these two tables on customer_name gives:

order_id	customer_name	customer_id
55	Smith	7
55	Smith	11
56	Smith	7
56	Smith	11
58	Miller	3
61	Smith	7
61	Smith	11

- The three red tuples where not in the original relation, and don't represent correct information
- They are called spurious tuples

► < Ξ ►</p>

1. Semantics and 2. Anomalies

3. Null values and 4. Spurious tuples

Reasons for spurious tuples

- Join attribute should be a key to one of the relations
- Ideally join on foreign key-primary key combinations
- The importance of selecting a join attribute that is a key to at least one of the relations will also follow from normalization considerations

Table of Contents

Informal guidelines for relational schemas 1. Semantics and 2. Anomalies 3. Null values and 4. Spurious tuples

Functional Dependencies (FD) Definition

Inference rules

Anne Denton Functional Dependencies

< 3 >

A D > <
 A +
 A +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Formal approaches

- Most formal methods to improve database design are based on the concept of functional dependencies
- More general concept of multi-valued dependencies has functional dependencies as a special case
- Formal methods start by considering database as a single relation, called the "universal relation"
- It is always possible to find a universal relation that contains all information
- The universal relation is a theoretical concept, it's not useful as a practical representation

イロト イポト イヨト イヨト

Definition of a functional dependency

- Functional dependencies are defined between sets of attributes X and Y
- Y is functionally dependent on X if knowing X leaves no ambiguity as to what the value of Y is
- The notation is: $X \to Y$
- Formally: For any two tuples t_1 and t_2 , if the value of X is the same for both, $t_1[X] = t_2[X]$, it follows that the value of Y is the same, $t_1[Y] = t_2[Y]$

(a)

Question 1 (Multiple answers can be correct)

Which of the following statements are correct about a possible functional dependency $X \to Y$ with X and Y being sets of attributes of relation R

- $\textcircled{0} \quad \text{It can be inferred that } Y \to X$
- If the value of X is known there is no ambiguity left as to what value Y has
- In a relation that only has attributes X and Y, X would be a superkey
- In a relation that only has attributes X and Y, Y would be a superkey

Some conclusions

- By the definition of a key, any attribute in a relation (Y) is always functionally dependent on any candidate key of the relation (X)
- A key of a relation is not dependent on an attribute that is not a key
- If you were to project a relation to X \cup Y, with duplicates eliminated, and X \rightarrow Y then X would be a superkey of the relation

Question 2 (Multiple answers can be correct)

Which of the following statements are correct about a functional dependency $X \to Y$ with X and Y being sets of attributes of relation R

- If it is ensured that the values of X in the relation will be unique, X will functionally determine Y
- If X only has a single value across all tuples in a database instance, it cannot functionally determine Y unless Y also only has a single value
- If attribute X does not functionally determine Y, then X together with Z will not functionally determine Y either
- If X functionally determines Y, then a subset of X will also functionally determine Y

Notes

- Functional dependencies have to hold for all legal database states
- You cannot conclude on the existence of a functional dependency by looking at one database state
- If you are sure that a database state is legal, you can conclude on the absence of some functional dependencies
- To be sure that a functional dependency holds, you have to argue within the miniworld requirements

Question 3 (Multiple answers can be correct)

Which of the following functional dependencies are expected to hold at NDSU?

- $\textcircled{O} \text{ NDSU email address} \rightarrow \text{Student first and last name}$
- 2 Student first and last name \rightarrow NDSU email address
- $\textcircled{O} \text{ NDSU email address} \rightarrow 7 \text{-digit number on NDSU ID card}$
- 3 Dept name and course number (e.g., CSci 765) \rightarrow Final Exam date

Question 4 (Multiple answers can be correct)

- A legal database instance can unambiguously establish that a functional dependency holds
- A legal database instance can unambiguously establish that a functional dependency does not hold

> < E >

Example Schema

Order

order_id customer_id customer_name

- Functional dependencies that have to hold for this table
 - $\bullet \ order_id \rightarrow customer_id$
 - $\bullet \ customer_id \rightarrow customer_name$
- Further functional dependencies
 - $\bullet \ order_id \rightarrow customer_name$
 - $\bullet \ order_id \ customer_id \rightarrow customer_name$
 - $\bullet \ order_id \rightarrow customer_id \ customer_name$
 - $\bullet \ order_id \ customer_id \rightarrow customer_id \\$

Trivial functional dependencies

- Some functional dependencies hold regardless of database state
 - An attribute always functionally determines itself
 - An attribute, together with any number of others, also functionally determines itself
- These observations hold trivially, and the corresponding FDs are called "trivial functional dependencies"
- $\bullet\,$ Formally: If X \supset Y, then X \rightarrow Y

(a)

Question 5 (Multiple answers can be correct)

Which of the following statements are correct

- Whether a trivial functional dependency holds can be established without seeing any database instance
- Seeing a database instance can allow you to identify that a trivial functional dependency does not hold

Table of Contents

Informal guidelines for relational schemas 1. Semantics and 2. Anomalies 3. Null values and 4. Spurious tuples

Inference rules

Anne Denton Functional Dependencies

O > <
 O >

► < ∃ ►</p>

Inference rules

- Typically a database designer only specifies FDs that are obvious from the semantics of the attributes
- If needed, other functional dependencies are derived by inference rules
- Reasons for importance of inference rules
 - Allow testing if two sets of functional dependencies are equivalent by inferring all others and seeing if the result is identical
 - Can be used for formal normalization algorithms

► < ∃ ►</p>

Union and decomposition rules

- Union rule: If $X \to Y$ and $X \to Z$ then $X \to YZ$
 - Can be shown from definition of a functional dependency
 - Applying it can be used to show that all relations with the same key can be combined
- $\bullet\,$ Decomposition rule: If $X \to YZ$ then $X \to Y$ and $X \to Z$
 - Separate relations could be created for the primary key together with each of the other attributes
 - Would require many joins
 - Useful for discussion of normalization

> < 3 >

Question 6 (Multiple answers can be correct)

③ If
$$X \to Y$$
 and $X \to Z$ then $X \to Y$, Z

3 If
$$X \to Y$$
, Z then $X \to Y$ and $X \to Z$

$$\textcircled{0} \quad \text{If } X \rightarrow Y \text{ and } X \rightarrow Z \text{ then } Y \rightarrow Z$$

• If
$$X \to Z$$
 and $Y \to Z$ then $X, Y \to Z$

ヘロト ヘアト ヘビト ヘビト

= nar

Transitive rule

- If $X \to Y$ and $Y \to Z$ then $X \to Z$
- This rule will be important in the normalization process
- Some transitive functional dependencies are not desirable
 - Details will be discussed as part of formal normalization process
 - $\bullet\,$ Problems arise if $Y \to Z$ holds, but Y is not a key of the relation
 - Note that since $X \to Z$ in the above scenario, X can be a key of the relation

Question 7 (Multiple answers can be correct)

If $X \to Y$ and $Y \to Z$ then

- $\bigcirc X \to Z$
- $\textcircled{2} X, Y \to Z$
- $\textcircled{3} X \to Y, Z$
- $\textcircled{3} Z \to X$

Anne Denton Functional Dependencies

イロン 不得 とくほ とくほう

= nar

Definition Inference rules

Armstrong's Inference Rules

Set of inference rules that can be used to deduce all others: Reflexive rule (IR 1): If $X \supset Y$, then $X \rightarrow Y$ Augmentation rule (IR 2): If $X \rightarrow Y$, then $XZ \rightarrow YZ$ Transitive rule (IR 3): If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

Challenge Question

Use Armstrong's Inference Rules to prove the Union Rule: If $X \to Y$ and $X \to Z$ then $X \to YZ$

(a)

3

Question 8

Consider the following legal instance of a database. Which of the following functional dependencies **can** hold? Which of the following functional dependencies **is guaranteed to** hold?

Α	В	С	D	Е
1	'gh'	4	'xy'	35
1	'ij'	7	'xy'	76
1	'kl'	11	'xy'	92
4	'mn'	17	'xy'	92

$$\begin{array}{l} \mathsf{B} \rightarrow \mathsf{A} \\ \mathsf{A} \rightarrow \mathsf{B} \\ \mathsf{A} \rightarrow \mathsf{D} \\ \mathsf{C} \rightarrow \mathsf{A} \\ \mathsf{A} \\ \mathsf{C} \rightarrow \mathsf{A} \\ \mathsf{A} \\ \mathsf{E} \rightarrow \mathsf{C} \end{array}$$