Relational Algebra Operations

Anne Denton

Department of Computer Science North Dakota State University

Anne Denton Relational Algebra Operations

 $\bullet \equiv \bullet$

Basic relational algebra operations

- Basic concepts
- Set-theoretic operations
- 2 Cartesian product and Joins
 - Cartesian product
 - Joins
 - Recursion

3) J

Basic concepts Set-theoretic operations

Table of Contents

Basic relational algebra operations

- Basic concepts
- Set-theoretic operations

Cartesian product and Joins
 Cartesian product

- Joins
- Recursion

< ∃→

The operations on relations produce relations

- The input and the output of all relational algebra operations are relations
- That means that arbitrary sequences of operations are possible
- For operations that are based on sets, those sets can also be the result of relational algebra operations ⇒ nesting
- Much of the flexibility of SQL derives from this observations

Basic concepts Set-theoretic operations

Set theoretic operations

- Since relations are sets of tuples, any set theoretic operations can be applied
- Union, intersection, and set difference are available for relations
- Cartesian product central to capability of combining relations

Basic concepts Set-theoretic operations

Specific operations to databases

- Select (σ) selects rows
- Project (π) selects columns
- Join (⋈) conceptually is a combination of select, project and cartesian product

► < ∃ ►</p>

Consider the following two relations

Student			
sid	sName		
2	Black		
5	Green		
9	Red		

Enrol			
sid	dept	cid	grade
2	CSci	366	А
5	CSci	366	В
2	CSci	474	В

ъ

Image: A matrix

Basic concepts Set-theoretic operations

Select

- Selects a subset of tuples from the relation
- $\sigma_{<\text{selection condition}>}(\mathsf{R})$
- Selection condition is a Boolean expression
- Select is commutative

Result of $\sigma_{(sid=5)}$ (Enroll):

sid	dept	cid	grade
5	CSci	366	В

< ∃→

How many rows result from the following

 $\sigma_{\text{(dept='CSci') AND (cid=366)}}(\text{Enroll})?$

= nar

O > <
 O >

Project

- Projects to a subset of attributes the relation
- $\pi_{< \text{attribute list}>}(\mathsf{R})$
- The relational algebra project eliminates duplicate rows, but the SQL implementation does not
- Project is not commutative, because attributes second project has to be a subset of those in first

Result of π_{cid} (Enroll):

cid 366 474 In a relational database all 3 entries would be preserved (366 would be listed twice)

イロト イポト イヨト イヨト

Basic concepts Set-theoretic operations

Brainstorming question

Why would it make sense for relational DBMSs to preserve duplicate entries?

< □ > < 同

Basic concepts Set-theoretic operations

Table of Contents

- Basic concepts
- Set-theoretic operations
- Cartesian product and Joins
 Cartesian product
 - Joins
 - Recursion

< ∃→

Basic concepts Set-theoretic operations

Set-theoretic operations

- Relations are sets of tuples
- Anything operation can be used on sets can be used on relations
- Union: $R \bigcup S$ includes tuples that are in R or in S
- Intersection: $R \cap S$ includes tuples that are in R and in S
- Set Difference: R S includes tuples that are in R but not in S

Result of π_{sid} (Student)- π_{sid} (Enroll):

sid

9

Assume that you want to select students that take both CSci 366 and CSci 474? Could you use $\sigma_{(cid=474)AND(cid=366)}$ (Enroll) to produce that result?

Assume that you want to select students that take both CSci 366 and CSci 474? Could you use $\sigma_{(cid=474)}(\text{Enroll}) \cap \sigma_{(cid=366)}(\text{Enroll})$ to produce that result?

Assume that you want to select students that take both CSci 366 and CSci 474? Could you use $\pi_{sid} \left(\sigma_{(cid=474)}(\text{Enroll}) \right) \cap \pi_{sid} \left(\sigma_{(cid=366)}(\text{Enroll}) \right)$ to produce that result?

Cartesian product Joins Recursion

Table of Contents

- Basic concepts
- Set-theoretic operations

2 Cartesian product and Joins

- Cartesian product
- Joins
- Recursion

< 3 >

Cartesian product

- Used to combine attributes from multiple relations
- Standard set theoretic operation
- Combines each element from one with each element from another
- Usually a selection is necessary to extract the useful ones

> < E >

Cartesian product Joins Recursion

Question 5

How many elements does the Cartesian product of the sets $\{1,2,3\}$ and $\{A,B\}$ have

- 0 0
- 2 2
- 3 3
- **④** 6

Anne Denton Relational Algebra Operations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

Question 6

How many elements does the Cartesian product of the following two relations $\{(1, A), (2, A), (3, B)\}$ and $\{(A, x), (B, y)\}$ have?

- 0
 2
- 3 3
- **④** 6

Anne Denton Relational Algebra Operations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

From Cartesian product to Join

In a database setting, one would expect the combination of the following relations

$$\begin{array}{c|cccc} 1 & A \\ 2 & A \\ 3 & B \end{array} \text{ and } \begin{array}{c|ccccc} A & x \\ B & y \end{array} \text{ to produce } \begin{array}{c|cccccccccc} 1 & A & x \\ 2 & A & x \\ 3 & B & y \end{array}$$

 \Rightarrow Selecting the rows with matching "join attribute" is called a natural join. After removing the redundant column the result is called natural join

Cartesian product Joins Recursion

Table of Contents

- Basic concepts
- Set-theoretic operations

Cartesian product and Joins
 Cartesian product
 Joins
 Recursion

► < ∃ ►</p>

Cartesian Product Example

Result of Student × Enroll:

Student. sid	Student. sName	Enroll. sid	Enroll. dept	Enroll. cid	Enroll. grade
2	Black	2	CSci	366	A
2	Black	5	CSci	366	В
2	Black	2	CSci	474	В
5	Green	2	CSci	366	Α
5	Green	5	CSci	366	В
5	Green	2	CSci	474	В
9	Red	2	CSci	366	Α
9	Red	5	CSci	366	В
9	Red	2	CSci	474	В

O > <
 O >

3

Making the Cartesian product useful

Superfluous rows removed by selection and columns by projection:

 π Student.sid,Student.sName,Enroll.dept,Enroll.cid,Enroll.grade(σ (Student.sid=Enroll.sid)(Student × Enroll))

Student.	Student.	Enroll.	Enroll.	Enroll.
sid	sName	dept	cid	grade
2	Black	CSci	366	А
2	Black	CSci	474	В
5	Green	CSci	366	В

Result of selection and projection called a natural join: **Student * Enroll**

(a)

Types of joins

- Student ⋈ Enroll: Inner join (also called equi join) does selection, but not projection and expects that join attribute specified for both
- In DBMSs the inner join is actually safer than the natural join
- **Student** * **Enroll**: Natural join does selection and projection and assumes that join attribute has same name
- In both cases only tuples included, where join attribute appears on both sides: Student with sid=9 not included!
- $\Rightarrow \text{Motivates Outer join}$

> < 3 >

Outer Join

- Student = M Enroll:Left Outer Join includes unmatched tuples for first relation
- Student \bowtie = Enroll: Right Outer Join includes unmatched tuples for second relation
- Student = M = Enroll: Full Outer Join includes unmatched tuples for both relations

Full Outer Join

Student.	Student.	Enroll.	Enroll.	Enroll.	Enroll.
sid	sName	sid	dept	cid	grade
2	Black	2	CSci	366	А
2	Black	2	CSci	474	В
5	Green	5	CSci	366	В
9	Red	<null></null>	<null></null>	<null></null>	<null></null>

Anne Denton Relational Algebra Operations

E 990

Consider the following two relations

aid	atovt	1	bid	aid
aid	alexi		123	2
1	X		450	2
2	vv	and	456	2
2	~~		111	4
4	У		222	<pre>/null></pre>
6	vz		222	
	,-	J	333	4

How many rows does the inner join have (aid is join attribute)

O > <
 O >

Consider the following two relations

aid	atovt	1	bid	aid
aid	alexi		123	2
1	X		120	2
2	vv	and	456	2
2	^^		111	4
4	У		222	
6	V7		222	
	,-]	333	4

How many rows does the left outer join have (aid is join attribute)

O > <
 O >

Consider the following two relations

		,	bid	aid
aid	atext		100	0
1	Y	1	123	2
			456	2
2	XX	and	111	1
4	v			
6	, J		222	<null></null>
0	уz		333	4
			000	

How many rows does the right outer join have (aid is join attribute)

O > <
 O >

Consider the following two relations

aid	atovt	1	bid	aid
aid	alexi		123	2
1	X		120	2
2	vv	and	456	2
2	~~		111	4
4	У		222	
6	V7		222	
	<i>yL</i>	J	333	4

How many rows does the full outer join have (aid is join attribute)

O > <
 O >

Cartesian product Joins Recursion

Table of Contents

- Basic concepts
- Set-theoretic operations

2 Cartesian product and Joins

- Cartesian product
- Joins
- Recursion

Anne Denton Relational Algebra Operations

Examples where operations could be defined recursively

For example

- Employee has supervisor
- Webpage links to another

Join between a relation and itself possible but

- Every level separate join
- No recursive joining of all levels as single relational algebra command

Consider the following relation

aid1	aid2
1	2
1	3
2	4
4	5

Assume that you join the table with itself, joining aid2 with aid1 each time. How many rows does an inner join produce after one join?

6 🔕

Consider the following relation

aid1	aid2
1	2
1	3
2	4
4	5

Assume that you join the table with itself, joining aid2 with aid1 each time. How many rows does an inner join produce after two joins?

6 🔕

Consider the following relation

aid1	aid2
1	2
1	3
2	4
4	5

Assume that you join the table with itself, joining aid2 with aid1 each time. How many rows does an inner join produce after three joins?

6 🔕

Consider the following relation

aid1	aid2
1	2
1	3
2	4
4	5

Assume that you join the table with itself, joining aid2 with aid1 each time. How many rows does a left outer join produce after one join?

< ∃ >

Consider the following relation

aid1	aid2
1	2
1	3
2	4
4	5

Assume that you join the table with itself, joining aid2 with aid1 each time. How many rows do left outer joins produce after two joins?

< ∃ >

Consider the following relation

aid1	aid2
1	2
1	3
2	4
4	1

Assume that you join the table with itself, joining aid2 with aid1 each time. How many rows do left outer joins produce after one join?

< ∃ >

Consider the following relation

aid1	aid2
1	2
1	3
2	4
4	1

Assume that you join the table with itself, joining aid2 with aid1 each time. How many rows do left outer joins produce after two joins?

< ∃ >

Cartesian product Joins Recursion

Problems with cycles

- Without cycles, inner joins eventually terminate
 - For inner joins no rows are left
 - For outer joins the number of rows no longer increases
- With cycles
 - The number of rows may increase indefinitely

> < 3 >

Question 18 (Multiple answers may be correct)

Which of the following scenarios may create indefinitely growing relations upon repeated joining?

- Employees and their supervisors
- Webpages linking to webpages
- Publications citing earlier publications

Also: What are the respective data structures called?